next up previous
Next: 正規分布 Up: 確率論の初歩 Previous: 確率論の初歩

確率, 確率分布関数, 確率密度関数

まず例題を考えてみよう。

酔っぱらいが居酒屋から出て, 南から北に伸びる一本道をふらふら歩いている状況を考える。 この酔っぱらいはとりあえず北に向かおうとしているが, 完全に酒が足に来ていて, 前に進むか後に戻るかがぜんぜん予想できないものとする。 また, 彼あるいは彼女は最大時速$ 6$kmの速さで歩くことができるものとする。 ここで, 酔っぱらいが居酒屋を出てから1時間後に, 居酒屋から北向きに測って$ w$ kmの地点にいるものとしよう。 さて, $ w$の値が$ -\infty$から$ x$のあいだにある確率はいくらだろうか?

ここで, わかっていることを整理してみる。 酔っぱらいが区間 $ (-\infty,x)$にいる確率を$ P(x)$と書く。 酔っぱらいの歩く速さが最大時速$ 6$kmであることから, $ x$$ -6$km 以下に取ったとき, $ P(x)$は零である。 $ x$$ -6$km からだんだん増やしてゆくと, $ P(x)$は単調に増加してゆく。 $ x$$ 6$km 以上のとき$ P(x)$はちょうど$ 1$である。 この例題では酔っぱらいの歩き方についての詳しい情報が与えられていないので, 上記の確率をこれ以上正確に求めることはできないのだが, 横軸に$ x$を取り, 縦軸に$ P(x)$を取ることにすると, だいたい図3のようなグラフが描けることがわかるだろう。

図 3: 確率分布関数$ P(x)$の概形
\resizebox{.45\textwidth}{!}{\includegraphics{drunker.eps}}

上の例で挙げた$ w$のように, その取り得る値が確率的に決まるような 変数のことを確率変数とよぶ。 また, $ x$に確率変数$ w$$ -\infty$から$ x$のあいだにある確率を対応させる写像$ P(x)$ (すなわち図3のようなグラフ)のことを, 確率分布関数という。

確率分布関数$ P(x)$にはいろいろな形のものがあるが, $ P(x)$は確率であるから, $ 0 \leq P(x) \leq 1$がつねに成り立つ。 また, $ x_1 \leq x_2 $であるとき $ w$の値が$ x_1$以下であれば必ず $ w$の値は$ x_2$以下となるから, $ P(x_1) \leq P(x_2)$が成り立つ。 すなわち, $ P(x)$$ x$に関し単調非減少である。 さらに, 確率変数$ w$$ x_1$から$ x_2$のあいだにある確率は $ P(x_2)-P(x_1)$で与えられる。

確率分布関数$ P(x)$が微分可能であるとき, $ P(x)$の導関数を 確率密度関数とよぶ。 以下では, 確率分布関数$ P(x)$に対応する 確率密度関数を$ p(x)$と書く。

$\displaystyle \int_{x_1}^{x_2} p(x) dx = \int_{x_1}^{x_2} \frac{dP}{dx} dx = P(x_2)-P(x_1)
$

であるから, 確率変数$ w$$ x_1$$ x_2$のあいだにある確率は, 確率密度関数を使えば,

$\displaystyle \int_{x_1}^{x_2} p(x) dx$ (24)

により与えられることがわかる。 なお, 図3に対応する 確率密度関数の概形は図4のようになる。
図 4: 確率密度関数$ p(x)$の概形
\resizebox{.45\textwidth}{!}{\includegraphics{drunker2.eps}}

確率変数$ x$がとびとびの値しか取らないとき$ x$離散的であるといい, そうでないとき$ x$連続的であるという。 上に挙げた酔っぱらいの移動距離は 連続的な場合の例である。 これに対し, 例えばさいころを1個振って出た目の数値 を$ x$とする場合には, $ x$は1から6までの6種類の値しか取りえないから, 離散的である。


next up previous
Next: 正規分布 Up: 確率論の初歩 Previous: 確率論の初歩
Shigeru HANBA
平成16年8月16日