電300・電350技術者の倫理 講義資料 (2012年度版)
琉球大学工学部 半場 滋

目次

1 モラルへのとびら 5

1.1 モラルと倫理 .. 5
 1.1.1 教科書におけるモラルと倫理の定義 5
 1.1.2 法と倫理はどう違うか 5
1.2 文明圏と倫理 .. 6
1.3 文明の分類 ... 6
1.4 倫理の条目 ... 7
1.5 モラル上の不一致 7
1.6 技術者の倫理教育 7
1.7 倫理規程 ... 8
1.8 マスメディアと倫理 8
 1.8.1 西山事件 ... 8
 1.8.2 朝日新聞記事捏造事件 9
 1.8.3 坂本弁護士殺害事件 10
 1.8.4 BPO .. 11
 1.8.5 BPOの2011年度の議題 (議事録より) 11
 1.8.6 最新の事例 12
1.9 課題 .. 13

2 技術者の倫理とは 14

2.1 前回の課題から 14
 2.1.1 挙げられた改善策 (昼間主) 14
 2.1.2 挙げられた改善策 (夜間主) 14
 2.1.3 追加コメント 15
 2.1.4 コメント欄から 15
2.2 今回の講義の構成 16
2.3 倫理に関する分析 16
 2.3.1 倫理的な考え方の分類 16
 2.3.2 直観主義の説明 16
 2.3.3 功利主義の説明 17
 2.3.4 (現代的な)直観主義の特徴 17
 2.3.5 (古典的な)功利主義の特徴 17
 2.3.6 歴史的な流れ 17
2.4 技術者の倫理が注目される理由 18
 2.4.1 科学技術の危険を防止 18
 2.4.2 公衆を災害から救う 19
2.4.3 公衆の福利を推進する .. 19
2.5 安全確保の潮流 ... 19
2.6 技術者倫理の特徴 ... 19
2.7 生命倫理 .. 20
 2.7.1 背景 .. 20
 2.7.2 生命倫理の概要 .. 20
 2.7.3 具体的な問題 .. 20
 2.7.4 インフォームド・コンセント .. 21
 2.7.5 倫理問題に対処するためのシステム 22
2.8 課題 .. 23

3 組織のなかの一人の人の役割 ... 24
 3.1 はじめに .. 24
 3.2 前回の課題 (技術者倫理の意義) から 24
 3.2.1 挙がった事例等: 昼間 .. 24
 3.2.2 挙がった事例等: 夜間 .. 25
 3.2.3 「地球温暖化」関連のコメント 26
 3.2.4 コメント欄から .. 26
 3.3 技術と社会 .. 27
 3.4 技術者の倫理の社会に対する役割 27
 3.5 社会福祉における予防の倫理 ... 27
 3.5.1 予防の利益と不利益 .. 27
 3.6 人間関係 .. 28
 3.7 技術者の倫理における利益相反 28
 3.8 技術者の倫理における利益相反 28
 3.8.1 公私混同型の利益相反 .. 28
 3.8.2 公私混同型の利益相反の解消 29
 3.8.3 クライアントや会社への隶属・従属型の利益相反 29
 3.8.4 忠実義務と公私混同の相反 29
 3.8.5 公益内相反 .. 29
 3.9 守秘義務 .. 29
 3.9.1 守秘義務とは (1) ... 30
 3.9.2 守秘義務とは (2) ... 30
 3.10 チャレンジャー号事件 ... 30
 3.10.1 事件の時系列・技術者の視点から 30
 3.11 企業倫理 .. 31
 3.11.1 企業倫理をめぐる論争 31
 3.11.2 経営者の責務 .. 31
 3.11.3 関連する事例: 東海地震では避難命令を出せるのか? 32
 3.12 集団思考 .. 32
 3.13 課題 .. 33

4 モラル上の人間関係 .. 34
 4.1 前回の課題 (集団思考) から ... 34
 4.1.1 昼間主 ... 34
 4.1.2 夜間主 ... 35
4.1.3 コメント欄から ... 35
4.2 倫理が作用する限界 ... 36
4.2.1 合法と違法の境界 ... 36
4.2.2 合法と違法の境界 (つづき) .. 36
4.2.3 違法行為を助長する可能性がある技術 36
4.3 コミュニティ ... 36
4.3.1 技術者のコミュニティ .. 37
4.3.2 雪印食品と西宮冷蔵の事例 .. 37
4.4 私的な人間関係 ... 37
4.5 業務上の相互関係 ... 38
4.5.1 技術者の専門形態 ... 38
4.6 利益相反 ... 38
4.7 公共 ... 38
4.8 職場生活と法的義務 ... 38
4.9 課題 ... 41

5 技術者のアイデンティティ .. 42
5.1 前回の課題 (電力設備) から ... 42
5.1.1 昼間主 ... 42
5.1.2 夜間主 ... 43
5.1.3 担当者コメンテ ... 43
5.1.4 コメント欄から ... 44
5.2 今回の講義内容 ... 45
5.3 JCO 事故 ... 45
5.3.1 原子力安全委員会の事故報告 45
5.3.2 水戸地裁判決 .. 45
5.4 科学技術 ... 46
5.4.1 科学者の倫理 .. 48
5.5 技術と技能 ... 48
5.5.1 製造現場から見た技能 .. 48
5.5.2 製造現場から見た技術 .. 49
5.5.3 技能と技術の比較 ... 49
5.6 科学技術を担う人々 ... 49
5.7 技術者の位置付け .. 50
5.8 技術者という職業の特徴 ... 50
5.9 IEA: 技術系卒業生の資質と能力 50
5.9.1 Washington Accord Graduate 50
5.9.2 Sydney Accord Graduate ... 51
5.9.3 Dublin Accord Graduate .. 51
5.9.4 Engineer, Technologist, Technician の比較 51
5.10 大学における実践的な技術者教育のあり方 52
5.11 課題 ... 53
6 技術者の資格

6.1 前回の課題 (教科書 [2], 事例 VIII(企業研究者のエネルギー事業分野選択)から 54
6.1.1 昼間主 ... 54
6.1.2 夜間主 ... 55
6.1.3 コメント欄から 56
6.2 専門職 ... 58
6.3 UK ... 58
6.3.1 Engineering Council (http://www.engc.org.uk/) .. 58
6.3.2 歴史的な流れ ... 58
6.4 USA ... 59
6.5 日本 ... 60
6.5.1 日本技術士会 http://www.engineer.or.jp/ ... 60
6.5.2 技術士 .. 60
6.5.3 JABEE http://www.jabee.org/ ... 60
6.5.4 JABEE 認定プログラム修了者 .. 60
6.5.5 修習技術者が技術士となるには .. 61
6.5.6 技術士補の登録 ... 61
6.5.7 技術士の登録 ... 61
6.5.8 まとめ:USAと日本の比較 ... 62
6.5.9 JABEEに未来はあるのか? ... 62
6.6 国際間相互認証 .. 62
6.7 科学倫理 ... 64
6.7.1 科学倫理で問題になること ... 64
6.7.2 研究における不正: 捏造 ... 65
6.7.3 研究における不正: 改竄 ... 65
6.7.4 捏造と改竄に関するコメ 65
6.7.5 剽竄、盗用 ... 65
6.7.6 捏造・改竄・剽竄・盗用のまとめ 66
6.7.7 科学者の社会的責任 67
6.8 ピア・レビュー .. 68
6.8.1 ピア・レビューとは .. 68
6.8.2 ピア・レビューの流れ .. 68
6.9 課題 ... 70

7 倫理実行の手法

7.1 前回の課題から (JCO) .. 71
7.1.1 昼間主 .. 71
7.1.2 夜間主 .. 72
7.1.3 担当者コメ .. 72
7.1.4 コメント欄から ... 73
7.2 倫理問題の分析 ... 74
7.2.1 争点の分類 .. 74
7.2.2 争点 事実関係の争点 .. 74
7.2.3 争点 2: 概念上の争点 .. 74
7.2.4 争点 3: 適用上の争点 .. 75
7.3 トヨタ過労死事件 .. 75
7.3.1 QCサークルとは 75
7.3.2 労働基準法 75
7.3.3 事件の経過 76
7.3.4 判決 76
7.3.5 裁判における争点 76
7.3.6 主張の対立 77
7.4 モラルに従う判断の方法 77
7.4.1 決疑論 77
7.4.2 Seven-step guide 77
7.4.3 功利的手段 78
7.5 課題 79

8 事故責任の法の仕組み 80
8.1 前回の課題から 80
 8.1.1 集計結果 (昼間主) 80
 8.1.2 集計結果 (夜間主) 80
 8.1.3 エレベータ製造会社の技術者に関するコメント 80
 8.1.4 現管理会社技術者に対するコメント 81
 8.1.5 前管理会社技術者に対するコメント 81
 8.1.6 市の技術者に対するコメント 82
 8.1.7 実際の事故について 82
8.2 コメント欄から 83
8.3 今回の場合について 84
8.4 注意・過失・欠陥 84
 8.4.1 注意義務 84
 8.4.2 過失 84
8.5 職務と注意義務 84
8.6 品質管理 84
 8.6.1 生産技術 84
 8.6.2 品質特性の分類 85
 8.6.3 統計的品質管理 (Statistical Quality Control, SQC) 85
 8.6.4 総合的品質管理 (Total Quality Control, TQC) 85
8.7 事故責任の法 85
 8.7.1 事後の責任追及の法の例 86
 8.7.2 技術にかかわる法規 (全分野共通) 86
 8.7.3 技術にかかわる法規 (個別分野) 86
8.8 法令 87
 8.8.1 成文法と不文法 87
 8.8.2 法実証主義と自然法論 87
 8.8.3 立憲主義 88
 8.8.4 法の支配 88
 8.8.5 法令の種類 88
 8.8.6 内容から見た命令の分類 88
 8.8.7 法秩序を保つしくみ 89
 8.8.8 法令の所轄事項 90
 8.8.9 不文法 90

5
10.1.5 O157 カイワレ事件 108
10.1.6 担当者コメント 109
10.2 三菱自動車の不祥事 109
10.2.1 三菱自動車のリコール隠し: 事例概要 109
10.2.2 三菱自動車のクラッシュ欠陥: 概要 110
10.3 コンプライアンス 111
10.3.1 Compliance という単語 111
10.3.2 コンプライアンスの意味 111
10.4 行政法 112
10.4.1 行政法とは 112
10.4.2 行政とは 112
10.4.3 行政主体 112
10.4.4 行政機関 113
10.4.5 行政組織 113
10.4.6 行政作用 114
10.4.7 行政作用の事後的統制 115
10.5 CSR 115
10.5.1 CSR の背景 115
10.5.2 類似概念との違い 116
10.5.3 CRS とは 116
10.5.4 企業の社会貢献活動 116
10.5.5 日本のコーポレート・ガバナンス 116
10.5.6 SRI 117
10.5.7 企業倫理 117
10.5.8 環境経営 119
10.6 課題 120
11 説明責任 121
11.1 前回の課題から (社会貢献) 121
11.1.1 昼間主 121
11.1.2 夜間主 121
11.1.3 社会貢献のあるべき姿に関する意見 121
11.1.4 社会貢献への否定的意見 122
11.1.5 コメント欄から 123
11.2 説明責任 124
11.2.1 Accountable の意味 124
11.2.2 アカウンタビリティ 124
11.2.3 説明 124
11.2.4 義務 vs 責任 125
11.2.5 技術者の説明責任の機能と特徴 125
11.2.6 説明責任を果たすことの難しさ 126
11.3 Public Relations (PR) 126
11.3.1 目的別の PR の分類 127
11.3.2 PR に関連した戦略 127
11.3.3 PR 活動のサイクル 127
11.4 市場対応 127
11.4.1 製品に問題が生じたときの企業の対応 ... 127
11.4.2 告知 .. 127
11.4.3 告知文 .. 128
11.4.4 告知方法 .. 129
11.4.5 告知基準 .. 130
11.4.6 リコール .. 130
11.4.7 被害者救済と法 .. 131
11.4.8 善情対応 .. 131
11.5 情報開示 .. 132
11.6 証明責任 .. 133
11.7 課題 ... 134

12 内部告発・情報法 135
12.1 前回の課題 (GM 食品) から .. 135
 12.1.1 昼間主 .. 135
 12.1.2 夜間主 .. 136
 12.2 コメント欄から .. 137
 12.3 今回の講義について ... 139
12.4 内部告発 .. 139
 12.4.1 内部告発の定義 .. 139
 12.4.2 whistleblowing の定義 ... 139
 12.4.3 内部告発の前にやるべきこと (S&M) 140
 12.4.4 国内の状況 .. 140
 12.4.5 公益通報者保護法 .. 141
 12.4.6 内部告発に関する新旧の問題 .. 142
12.5 個人情報の保護に関する法律 ... 143
 12.5.1 プライバシー .. 143
 12.5.2 個人情報保護法の現状 .. 144
 12.5.3 事業者等の義務 .. 144
 12.5.4 適用除外 ... 144
 12.5.5 プライバシーマーク制度 .. 145
12.6 特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律 145
12.7 不正アクセス行為の禁止等に関する法律 145
12.8 改正刑法 ... 146
12.9 電気通信事業法 .. 147
12.10著作権法 ... 147
12.11情報法その他 ... 147
12.12情報法等に関する文献 ... 148
12.13課題 ... 149

13 環境と技術者 150
13.1 前回の課題 (Wikileaks) から ... 150
 13.1.1 昼間主 .. 150
 13.1.2 夜間主 .. 151
 13.1.3 担当者コメント .. 152
 13.1.4 コメント欄から ... 153

8
13.2 持続可能な開発 ... 155
13.3 日本植林史 .. 155
13.4 江戸代の循環型経済 ... 156
13.5 公害とその対策 .. 156
 13.5.1 別子銅山煙害 ... 156
 13.5.2 公害対策法令など 156
 13.5.3 4大公害病 .. 156
 13.5.4 四日市公害 (三重県四日市市) 157
 13.5.5 水俣病 (熊本県水俣市) 157
 13.5.6 新潟水俣病 (新潟県阿賀野川流域) 158
 13.5.7 イタイイタイ病 ... 159
13.6 環境問題 ... 160
13.7 地球温暖化? ... 160
 13.7.1 太陽活動、17世紀以来の休止期に突入か 160
 13.7.2 世界の平均気温の変動 161
 13.7.3 日本の平均気温の変動 161
 13.7.4 温室効果ガスの排出量 (国別) 162
 13.7.5 温室効果ガスの排出量 (国別) 162
 13.7.6 温室効果ガスの排出量 (国別) 162
 13.7.7 排出量 1〜10 位の国の 1971 年との比 163
13.8 黄砂 .. 164
 13.8.1 国内で黄砂が観測された日数 164
13.9 オゾンホール .. 164
 13.9.1 オゾンの総量の経年変化 (昭和基地) 164
 13.9.2 オゾンの総量の経年変化 (那覇) 165
 13.9.3 オゾンの総量の経年変化 (つくば) 165
 13.9.4 オゾンの総量の経年変化 (札幌) 165
 13.9.5 日積算 UV-B 量の 2 月平均値 (昭和基地) 166
 13.9.6 日積算 UV-B 量の年平均値 (那覇) 166
 13.9.7 日積算 UV-B 量の年平均値 (つくば) 166
 13.9.8 日積算 UV-B 量の年平均値 (札幌) 166
13.10 酸性雨 ... 167
13.11 その他の環境問題など 167
13.12 環境倫理 ... 167
 13.12.1 環境倫理学の主張 167
 13.12.2 環境倫理学の類型 168
 13.12.3 担当者見解 .. 168
13.13 課題 .. 169

14 技術者の財産的権利 170
14.1 前回の課題 (失敗の責任) から 170
 14.1.1 昼間主 ... 170
 14.1.2 夜間主 ... 171
 14.1.3 担当者見解 (あくまで個人的意見) 171
 14.1.4 コメント欄から ... 172
14.2 ナイロン .. 173
14.3 技術流出 .. 173
14.3.1 新幹線 (日本経済新聞) 173
14.3.2 電気自動車に関する情報横断 (産経新聞) 174
14.3.3 デンソー事件 (共同通信) 175
14.3.4 東芝で原発等の設計データの盗難 175
14.4 青色 LED 特許係争 ... 176
14.4.1 経過 ... 176
14.4.2 東京地裁判決 .. 176
14.4.3 東京高裁での和解 .. 177
14.5 企業と (元) 従業員等の特許係争 177
14.6 職務発明と特許権 .. 179
14.6.1 特許法 .. 179
14.6.2 使用者の職務発明への対応 180
14.6.3 職務発明規定 ... 180
14.7 大学の特許 ... 180
14.7.1 TLO .. 181
14.7.2 担当者コメント ... 182
14.7.3 承認・認定 TLO 一覧 182
14.7.4 沖縄は.. 184
14.8 起業 .. 184
14.9 課題 ... 185

15 技術者の国際関係 .. 186
15.1 前回の課題 (研究成果は誰のものか) 186
15.1.1 昼間主 ... 186
15.1.2 夜間主 ... 187
15.2 コメント欄から .. 187
15.3 地域統合、2 国間協定 ... 188
15.4 標準と標準化 ... 188
15.4.1 歴史的背景 .. 188
15.4.2 標準化 ... 189
15.4.3 規格 .. 189
15.4.4 工業標準化の意義 190
15.4.5 日本の標準化の歴史 190
15.5 規格 .. 192
15.5.1 規格の分類 ... 192
15.5.2 国際規格の分類 ... 192
15.5.3 国家規格の分類 ... 192
15.5.4 代表的な国際規格 193
15.5.5 代表的な地域規格 193
15.5.6 代表的な官庁規格 193
15.5.7 代表的な団体規格 193
15.5.8 国家規格の例 ... 194
15.6 標準と企業の戦略 .. 195
15.7 ISO 規格の制定手順 .. 195
15.7.1 迅速工程 ... 197
15.8 IEC 规格的制定手顺 ... 197
15.9 ISO マネジメントシステム ... 197
15.10 環境規制 ... 197
 15.10.1 RoHS 指令 ... 198
 15.10.2 WEEE 指令 ... 198
 15.10.3 ELV 指令 ... 198
 15.10.4 玩具指令 ... 198
 15.10.5 ErP 指令 ... 198
 15.10.6 包装材指令 .. 199
 15.10.7 REACH 規則 .. 199
15.11 課題 ... 200
この資料について

この資料は、2012年4月11日から7月23日までにわたって講義された、琉球大学工学部電気電子工学科の3年次必修科目（夜間コースは選択）

電 300・電 350 技術者の倫理

の講義資料（全15回分）をまとめたものである。受講者数は昼間主クラス（電 300）が93名、受講者数は夜間主クラス（電 350）が15名であった。

本稿の元の講義資料は、液晶プロジェクトでスクリーンに映すことを前提としたレイアウトとなっていたが、この資料は、それを取り壊し、レイアウトをA4用紙を前提としたものに変更し、若干の手直しをおこなった。なお、元の講義資料は縮小印刷して受講生に配付している。

スクリーンで資料を見せながら見せながら説明することを前提とした資料であるので、文章の大半は箇条書きになっているが、これを通常の文章に書き直すことはなかった。

本資料に基づく講義がどのように進められたかについて簡単に説明しておく。授業時間90分のうち60〜70分で本資料に基づく講義をおこない、20〜30分で課題に関してA4用紙1枚に見解等を書かせた。課題はおもに

1. 杉本、高城：技術者の倫理入門、第4版、丸善、2008

2. 電気学会倫理委員会、技術者倫理事例集、電気学会、2010

から取ったが、時事問題等から出題した回もある。課題を書くときには、他の受講生とその場で議論することを推奨した。講義に向積極性を持たせるため、第2回目以降は、学生の解答のまとめを講義の冒頭で紹介し、それにに関するコメットを述べた。解答用紙には講義に関する意見等を書く欄があり、そこに様々な質問等が寄せられたのだが、それらの大半について講義冒頭で回答した（技術者の倫理と直接関係がなくても、学業に関連するとと思われるものについては回答）。やや直線的に回答し過ぎている部分があるが、敢えてそのまま残した。

講義を準備するにあたり、内容が過剰に否定的であるかは攻撃的となるよう注意した。また、学校を将来技術者として仕事をする上で役立つと思われる方法論（事故分析、市場対応など）についてはある程度詳しく取り上げた。現在の日本の教育体制のもとでは工学部の学生が十分な法律的知識を持っているか、を考えにくいので、講義の一部に法律の利用法ととても呼ぶべき部分を設け、法律の条文の読み方、行政法の構造などについて解説した。また、日本が歴史的に優れていた点（植民、循環型経済、国際規格への積極的対応）について述べるべきと取り上げるように心がけた。企業倫理やCSRについてもある程度解説した。結果として、この講義資料は、一般的な「技術者の倫理」の教科書とは若干趣きが異なるものとなったが、学生に役に立つ知識を提供するという意味では、このようなスタイルの講義にも一定の意義があると考えている。

筆者は2011年からこの講義を担当し、今年度で2回目であるが、2011年度と2012年度の講義内容の相異について簡単に説明しておく。2011年度には、講義の準備をしている途中で福島第一原発事故が起きたため、黒せんを極めて危険な状態で推移するの中で講義を進めた関係で、福島の現状について講義中で報道資料等から分かった範囲である程度詳しく説明した（講義の正確性、現在進行中の重大事故を無視して教科書にしたがって淡々と解説することに価値があるとは思えなかった）。それに対し、2012年度には、福島第一原発は何とか小規模状態と呼べなかった状態を保っているが、福島の現状について講義中で述べる必要性はなくなり、原発事故に関する記述を削除し、かわりにマスメディアの倫理、生命倫理などの話題を追加した。また、データはある程度新しいものと差し換えた。
シラバス等

- 授業内容 (シラバスより)
 - 技術者が学んでおくべき倫理, 法, 関連する方法論を概説
 - 倫理的概領および行動規範, 倫理的な思考方法の仕組みについて説明
 - 技術者が社会に及ぼす影響, 技術者と社会との関わり, 技術者が社会に対して負う責任などについて, 事例をまじえて検討

- 授業の進め方
 - 教科書 1(杉本, 高城: 「技術者の倫理入門」)を中心に
 - 1回あたり 1章のベース
 - 電気系向けの事例を教科書 2(電気学会倫理委員会, 「技術者倫理事例集」)で補う
 - 必要に応じて時事問題を取り扱う

- 授業内容に関する注意
 - 教科書 1 には 15 回の講義に足る内容は含まれていないので, 適宜いろいろな話題を追加する
 - 話題を追加する際には, 可能な限り出典を明示する; 出典は他の書籍のこともあれば, Web 上のデータのこともある
 - 教科書 2 は演習専用
 - 倫理問題には正解がないことも多く, 多様な視点がある
 - 教科書の記述が「正しい」とは限らない
 - 担当者 (半場) の見解が教科書と異なることもある
 - 受講者がいずれに同意しないものもありうる (それで全く構わない)
 - 重要なのは, 先入観や希望的観測を排除し, 事実 (データ) 基づいて客観的に考えること

- 達成目標 (シラバスより)
 - 倫理的な考え方や方法論, 関連する法令, 技術の自然・社会への影響, 技術者の社会的責任を理解し, それに基づいて意見を述べることができる.
 - この科目は, 本学科学士教育プログラムの学習・教育目標 (E)「技術者と社会との接点および技術者の倫理観および責任の理解」に関連する科目である.

- 評価基準: 倫理的な考え方や方法論, 関連する法令, 技術の自然・社会への影響, 技術者の社会的責任を理解し, それらを踏まえて具体的な事例に対して論理的に意見を述べることができる.

- 評価方法
 - 毎週授業中にレポートを出題し (後半約 30 分, A4 用紙 1 枚程度), レポートに基づいて成績を評価する.
 - レポートの配点は 1 回あたり 6 点あるいは 8 点満点で, 15 回分の累計が 100 点満点となるように調整されている.
 - 期末試験は実施しない.
 - レポート作成にあたり, まわりの人と議論することを推奨する (レポート自体は必ず自分で書くこと)
● その他注意

- レポートは返却しないが、どのような意見が出たかをまとめたものを翌週の講義の冒頭で説明する
- レポートにはコメント欄を設ける。講義に関する質問・意見等を自由に記述してよい。
- コメント欄は成績には一切関係しない。
- コメント欄に書かれた事項に関する回答は翌週の講義の冒頭で述べる（ただし、講義のまったく関係ない質問等には回答しかねる場合がある）
1 モラルへのとびら

1.1 モラルと倫理

- 言葉の定義は重要
- 定義が曖昧だと何の話をしているのかわからなくなる
- 以下、教科書にしたがってモラルと倫理の定義を述べる
- 定義を暗記することは不要 (そんなに素晴らしい定義というわけではないので)

1.1.1 教科書におけるモラルと倫理の定義

モラル 人が対人関係において、してよいこと、してはいけないことを識別し判断する基準をそなえていて、
その判断に従って行動しようとする意識

倫理 モラルにもとづく判断を、「～してはいけない」「～するようにしよう」という規範の形にしたもの

モラル行為者 モラルに従って行為しようとする人

1.1.2 法と倫理はどう違うか

- 倫理: 人が自律的に遵守することが期待される規範
- 法: 権力によって遵守することを強制される規範

注意

- 教科書では法を強制する主体を国家権力と限定しているが、たとえば条例は特定の地方公共団体にお
 いてのみ有効なので、教科書の記述は必ずしも適切でない
- 教科書4ページに「倫理はコミュニティの規範」という記述があるが、この説明は適切ではない。た
 とえば、会社等の従業員の行動は就業規則等によって制約されているし、学生の行動は学則によって制
 約される。これらは他律的な規則である。
- 法と倫理の切り分けは必ずしもうまくいかない
- 倫理的な考え方と法的な考え方の対比が必要なことも多い
- 法は社会の骨格; 倫理問題の分析には法に関する知識が必要
- 日本の教育システムでは、理系の学生が法について学ぶ機会がほとんどない
- 法に関する知識を欠いたまま倫理問題について論ずるのは、印象批評であり、あまり意味がない
- 講義の後半で、法に関する最低限の予備知識を講義する
- 印象批評:
 - 客観的な尺度によらず、作品から受けた主観的感想に基づいて論じようとする批評態度 (大辞林
 第2版)
 - 作品の印象に基づく主観的批評 (日本語大辞典 第2版)
1.2 文明圏と倫理

- 倫理とは「そのコミュニティによって共有される価値観」(範囲限定)、文明圏によって異なる
- 教科書にはキリスト教、ヒンドゥー教、仏教、ユダヤ教、イスラム教からの例
- 書籍によっては、西欧の個人(「神」と一対一で向き合う個人)の確立を倫理の必要条件であるかどうかに記載しているものもある(キリスト教的価値観を持たない日本で倫理を論することは難しい、というような文脈で)
- 似たような文脈で、日本の「世間」という考え方を、「呪術的」「差別の源泉」などと断じている書籍もある
- 伝統的に日本で社会秩序が良好に保たれていたことを考えると、日本に(西欧と同じものであるかどうかはともかくとして)倫理がなかったとは考え難い

日本人の倫理観の変遷 (村上: 倫理学講義、成文堂、2003)
- 古代人の倫理観... 神道?
- 十七条憲法 (604 年) はある種の倫理規程
 - 第 1 条: 和を以て貴しと為し、件 (さか) ふること無きを宗(むね) とせよ。
- 平安時代に儒教と仏教が普及
- 寛永時代には実践道、禅宗
- 江戸時代には朱子学、国学
- 明治時代には国家神道、西欧哲学など
 いろいろ入り混じって現在も残存しているように見える

支配階級の倫理と庶民の倫理
- 先に述べたものは支配階級の倫理観
- 庶民の倫理観の根拠はよくわからない
- 西欧の資本主義発展はプロテスタントの倫理観に基づいていたという分析がある(マックス・ウェーバー、プロテスタンティズムの倫理と資本主義の精神)
- 江戸時代以降の日本人の勤勉、職人気質等はある種の倫理観に基づいていたものと思われる
- 支配階級 VS 庶民という 2 項対立の構図自体もある種の政治思想の産物なので要注意

1.3 文明の分類

- 日本文明は西欧の文明と同時進行的に動いていた、という分析もある(梅棹、文明の生態史観)
- ハンチョンの「文明の衝突」では世界を複数の文明圏に分けて考えるが、日本文明は、他から孤立した、1 国のみならず孤立文明であるとされている
- ハンチョンの分類(「文明の衝突」より): 中華文明、日本文明、ヒンドゥー文明、イスラム文明、西欧文明、ロシア正教会文明、ラテンアメリカ文明、アフリカ文明
- 各文明はさらに細分可能、たとえばイスラム文明圏でも、アラブとペルシアは相当異なる
1.4 倫理の条目

- 法が機能するためには以下が必要（法には強制力もある）
 - 法が周知されていること
 - 人々に法を守ろうとする意識があること（違法精神）

- 倫理が機能するためにも、以下が必要
 - 規範（倫理規程、行動憲章等）が周知されていること
 - 人々にモラルに基づいて行動しようとする意識があること

- 規範を成文化しないと、人によっててんでほぼならばな理解をしている、n という事態が発生しうる

- 人々にモラルに基づいて行動しようとする意識がなければ、規範は形骸化する

- 教科書 11 ページに 2002 年の東京電力によるトラブル隠しの話が出ているのは、2011 年現在の福島第 1 原発の状況を考えると、皮肉な巡り合わせ

1.5 モラル上の不一致

- モラルに関する意識の共有があっても、「どこまでは OK、どこからは NG」という切り分けには不一致が発生しうる（教科書 13 ページ A1 から A5）

- 教科書では、価値観の相異によって発生するトラブルは、信頼関係および対話によって、ある程度は克服しうると主張されている

- 教科書では「価値観」未定義、モラルの定義は
 人間が対人関係において、してよいこと、してはいけないことを識別し判断する基準をそなえて、その判断に従って行動しようとする意識

これは実は価値観の一部

注意

- モラル、倫理、価値観といった議論をしていると、ある種の循環論法に陥ることがよくある（切り分けがうまくいかない）

- 倫理は価値観を共有したコミュニティ内部でしか意味を持たない

- 多分の価値観の相異は対話によって吸収可能

- モラルに関する問題は、倫理規程等を機械的に適用すれば適用できる、というような、すっきりした形式の解答を持たないことが多い

- 価値観のばらつきに関連した問題を含むことが理由のひとつ；これ以外に利益相反の問題もある

1.6 技術者の倫理教育

- 技術者倫理は「法・倫理・科学技術の融合体」

- 「技術者の」倫理という考え方はアメリカ合衆国で先行し、日本にはまだ十分に定着しているわけではない

- 自分で考えることが重要
1.7 倫理規程

- 電気系の学生が関係する主要学会は電気学会あるいは電子情報通信学会、それぞれが倫理規程を持つ
- 電気学会の倫理規程は
 電気学会倫理委員会: 技術者倫理事例集
 に記載されているので読んでおくこと
- 電子情報通信学会の倫理規程については配布資料参照

1.8 マスメディアと倫理

- 技術者の倫理の教科書では、マスメディア (新聞・テレビ) の報道に基づいて倫理問題を論じることが多い
- 地震およびその後の原発報道で、現在の日本のマスメディアは重要な事実を報じないことがあるし、報道の内容は正確さを欠くであるということが明らかになってしまった。
 マスメディアの報道のみに基づいて倫理問題を論じるのは危険
- マスメディアを批判的に見る必要があることを周知するために、過去にマスメディアが引き起こした有名な倫理問題をいくつか列挙する
- 政治的な争いがある問題は除く
- 情報源として Wikipedia を使うが、一般に Wikipedia の記述は信頼性に問題があるので、裏が取れる場合のみ信用すべき

1.8.1 西山事件

- 1971 年に起こった事件
- 出典は Wikipedia
- 沖縄返還に関する日米「密約」を毎日新聞社政治部の西山が漏洩した問題
- 西山が情報目当てに既婚の外務省事務官に近づき酒を飲ませ泥酔させた上で性交渉を結んだことが問題になった
- 丸善&ジュンク堂で「西山事件」を検索すると...
 関連書は 1 冊のみ: 山本 祐司 著, 毎日新聞社会部, 河出書房新社 2012
 商品の内容 沖縄密約事件=「西山事件」は何を語るのか 下山事件、松川事件からロッキード、角栄逮捕まで、戦後、権力の闇をあぼく報道によって社会を震撼させ、そうであるがゆえに課題の標的にもなってきた毎日新聞、その栄光と悲劇の歴史を、血がにじむような努力で真実に迫った事件記者たちの姿とともに描き出す、社会部長だった著者でもしか書けなかった渾身のノンフィクション。

<table>
<thead>
<tr>
<th>事件概要</th>
<th>上述書内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>西山が情報目当てに既婚の外務省事務官に近づき酒を飲ませ泥酔させた上で性交渉を結んだ</td>
<td>血がにじむような努力で真実に迫った事件記者たちの姿</td>
</tr>
</tbody>
</table>
1.8.2 朝日新聞珊瑚記事捏造事件

- 1989年に起こった事件
- 出典：(はてなのキーワード http://d.hatena.ne.jpkeyword/)
- 朝日新聞社記者が珊瑚に傷(K.Yという文字)を付けて写真を撮影し、それに基づいて日本人の心の貧しさを批判する記事を掲載した

写'89地球は何色？サンゴ汚れた K・Yってだれだ　(朝日新聞 1989年4月20付 夕刊)
これは一体なんのつもりだろう。沖縄・八重山群島西表島の西端、崎山湾へ、直径8メートルという巨大なアザミサンゴを撮影した私たち同僚は、この「K・Y」のイニシャルを見つけたとき、しばし言葉を失った。巨大サンゴの発見は、7年前。水深一五メートルのなだらかな斜面に、おわんを伏せたような形。高さ四メートル、周囲は二十メートルあって、世界最大とギネスブックも認め、環境庁はその後の翌年、周辺を、人の手を加えてはならない海洋初の「自然環境保全地域」と「海中特別地区」に指定した。

たまちがい名查のれないが、巨大サンゴが無残な姿にした。島を訪れるダイバーは年間三千人とも膨れあがって、よく見たるとサンゴは、空気ポンベがぶつかった跡やで、もはや満身傷だらけ。それもたやすく消えない傷なのだ。日本人は、落ち込みかけては今や世界に冠たる民をもしれない。だけここれは、将来の人たちが見たら、八〇年代日本人の記念碑になるに違いない。百年単位で育ってきものを、瞬時に傷つけて恥じない。精神の貧しさの、すんだ心の……。にもしても、一体「K・Y」ってだれだ。

おわび 本社取材に行き過ぎ 西表島沖のサンゴ撮影　(朝日新聞 1989年5月16日付 朝刊)
四月二十日付の朝日新聞夕刊一面に掲載した写'89「地球は何色？サンゴ汚れた K・Yってだれだ」に関し、地元の沖縄県竹富町ダイビング組合員から「サンゴに書かれた落書きは、取材者によるものではないか」との指摘がありました。本社で調査をした結果、取材に行き過ぎがあったことがわかりました。

西表島崎山湾沖にあるアザミサンゴの周辺一帯に、いくつかの落書きがありました。この取材に当たったカメラマン二人のうち一人が、そのうちの「KY」という落書きについて、撮影効果を上げるため、うっすらと残っていた部分を水中ストロボの柄でこすり、白い石灰質をさらに露出させたものです。

同海域は巨大なアザミサンゴが見つかったため、海中特別地区に指定されております。この取材は本来、自然破壊の現状を訴え、報道することが目的でしたが、この行為は、明らかにこれに反する行き過ぎであり、朝日新聞社として深くおわび致します。朝日新聞社は十五日付で、取材カメラマンと責任者である東京本社の編集局長、写真部長に対し、処罰の措置をとりました。(3面に編集局長の「反省」を掲載しました。)

落書き、ねつ造でした 深くおわびします　(1989年5月20日付 朝刊)
四月二十日付の本紙夕刊一面に掲載された「サンゴ汚れた K・Yって誰だ」の写真撮影について、朝日新聞社はあらためて真実調査を続けてきましたが、「KY」とサンゴに飾り込んだ場所に以前から人為的な損傷があったという事実は認められず、地元ダイバーの方が指摘されるように、該当カメラマンが無傷の状態にあった沖縄・西表島のアザミサンゴに文字を刻みつけたとの判断に達しました。

このため、本社は社内規定により十九日、撮影を担当した東京本社写真部員（当時）本田嘉郎を同日付で退社処分としたほか、関係者についての処罰を行いました。自然保護を訴える記事を書くために、貴重な自然に傷をつけられるなどは、新聞人にあるまじき行為であり、ただ驚いる
ばかりです。関係者、読者、並びに自然を愛するすべての方々に、深くおわびいたします。取材の二人退社・停職 監督責任者も処分この事件につき、朝日新聞社はさらに十五日付でとりあえず関係者三人を処罰するとともに、東京本社編集局長、同写真部長を更迭するなどの措置をとりました。

しかし、本田写真部長 (十六日付で編集局員) らの行為は当時の報道よりもはるかに重大・悪質であることが明らかになったため、さらに十九日付で本田を退社処分にしたり、水中撮影に同行し、本田の行動に気づいていた西部本社写真部員村田昇は停職三カ月としました。また、監督責任、出稿点検不適切などで専務取締役・編集担当中江利忠、東京本社編集局次長兼企画報道室長桑島久男、西部本社写真部長江口満、東京本社写真部長福永友保はそれぞれ減給、西部本社編集局長松本則則は懲罰とする処置をとりました。本田に対する退社は、いわゆる懲戒解雇に当たる、もっとも厳しい処分です。(3 面に、本社がこれまで行った調査結果を掲載しました)

1.8.3 坂本提弁護士一家殺害事件

(情報源: http://www.mars.dti.ne.jp/ takizawa/)

<table>
<thead>
<tr>
<th>年</th>
<th>事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989年</td>
<td></td>
</tr>
<tr>
<td>10月26日</td>
<td>坂本インタビュー録画、早川、上祐、青山ら TBS の千代田分室を訪れ、抗議。TBS 坂本インタビューの放映中止。</td>
</tr>
<tr>
<td>10月31日</td>
<td>早川、上祐、青山ら横浜法律事務所を訪れ、坂本弁護士と交渉</td>
</tr>
<tr>
<td>11月4日</td>
<td>坂本弁護士一家殺害事件発生</td>
</tr>
<tr>
<td>1995年</td>
<td></td>
</tr>
<tr>
<td>10月12日</td>
<td>TBS、地検へ坂本インタビュープーブ提出</td>
</tr>
<tr>
<td>10月19日</td>
<td>日本テレビ、TBS が放映前の坂本インタビューをオウム幹部に見せたと報道。同日、TBS は直ちに否定の報道</td>
</tr>
<tr>
<td>1996年</td>
<td></td>
</tr>
<tr>
<td>3月11日</td>
<td>TBS、坂本インタビュービデオを見せた事実はでてこなかったとの「社内調査概要」を発表</td>
</tr>
<tr>
<td>3月12日</td>
<td>中川公判、TBS のプロデューサーら及び早川の供述調査の要旨告知、横浜法律事務所、TBS に対して公開質問状</td>
</tr>
<tr>
<td>3月19日</td>
<td>TBS、横浜法律事務所の公開質問状に対する回答書提出、坂本インタビューのビデオを見せた事実はでなかったと回答、TBS 大川常務、衆議院法務委員会に参考人招致、社内調査概要に従って発表</td>
</tr>
<tr>
<td>3月25日</td>
<td>TBS 磯崎社長、坂本インタビューをオウムの早川らに見せたことを認める内容の記者会見</td>
</tr>
<tr>
<td>3月28日</td>
<td>TBS 大川前常務、衆議院法務委員会で陳謝</td>
</tr>
<tr>
<td>4月2日</td>
<td>TBS 磯崎社長ら、衆議院通信委員会に参考人招致</td>
</tr>
<tr>
<td>4月3日</td>
<td>TBS 磯崎社長ら、衆議院通信委員会に参考人招致</td>
</tr>
<tr>
<td>4月30日</td>
<td>TBS、坂本インタビュープーブ問題についての社内調査概要など発表、特別報道番組「検証」放映</td>
</tr>
<tr>
<td>5月24日</td>
<td>TBS、横浜法律事務所に公開質問状に対する再回答書提出、三月一九日の回答書を全面的に撤回し、坂本インタビューを捜査を認めるとともに、遺族、横浜法律事務所などに謝罪</td>
</tr>
<tr>
<td>12月18日</td>
<td>TBS「放送のこれからを考える会」(座長・堺田力弁護士) が、報道現場における「個の確立」を求める提言</td>
</tr>
</tbody>
</table>
テレビ局による不祥事は件数が突出して多い

Wikipediaで「テレビ朝日」「TBSテレビ」「フジテレビ」などの「不祥事」の項を見ると、あまりの件数の多さに愕然とする

件数が多すぎるのでこの講義資料には掲載しない。興味がある者は各自で確認してほしい

1.8.4 BPO

放送倫理・番組向上機構 Broadcasting Ethics & Program Improvement Organization

「正確な放送と放送倫理の高揚に寄与することを目的とした非営利・非政府の団体」(公式サイト http://www.bpo.gr.jp/bpo/に記載された「概要」より)

1.8.5 BPO の2011年度の議題(議事録より)

4月 1. 事実確認に問題があったテレビ東京の情報バラエティー番組『月曜プレミア！主治医が見つかる診療所』及び毎日放送のバラエティー番組『イチハチ』

2. ペットショップの取材対象者が不適切だった日本テレビの報道番組『news every. サタデー』

3. 政治的公平性が問題になった BS11 の討論番組『“自”論対論 参議院発』

5月 4月と同一

6月 1. 日本テレビ『ペットビジネス最前線』報道に関する意見の通知・公表

2. 政治的公平性が問題になった BS11 の討論番組『“自”論対論 参議院発』

3. 誇張表現が著しく南大東村長から抗議を受けたテレビ東京の情報バラエティー番組『ありえへん∞世界』

7月 1. BS11『“自”論対論 参議院発』に関する意見の通知・公表について

2. テレビ東京『月曜プレミア！主治医が見つかる診療所』および毎日放送『イチハチ』に関する意見の通知・公表について

3. 誇張表現が著しく南大東村長から抗議を受けたテレビ東京の情報バラエティー番組『ありえへん∞世界』について

9月 1. 日本テレビ『ペットビジネス最前線』の対応報告書について

2. 誇張表現が著しく南大東村長から抗議を受けたテレビ東京の情報バラエティー番組『ありえへん∞世界』について

3. 不適切な字幕テロップが放送された東海テレビ『ぴーかんテレビ』について

10月 1. 「BS11『“自”論対論 参議院発』に関する意見」への対応報告書について

2. 「情報バラエティー2」番組「事案に関する意見」へのテレビ東京および毎日放送の対応報告書について

3. 「東海テレビ放送『ぴーかんテレビ』問題に関する提言」の公表について

4. 「テレビ東京『ありえへん∞世界』に関する意見」の通知・公表について

5. その他
11月) 航空便があるのに陸路を数十時間もかけて旅をしたのは、秘密を強調するヤラセではないかと指摘された民放局のバラエティー番組

12月) 1. 原発事故による放射能が日本各地の食事に与える影響を検証したデータに誤りがあった NHK『あさイチ』
2. 事前収録した出演者の映像を生中継であるかのように演出した日本テレビ『日テレ系音楽の祭典 ベストアーティスト 2011』
3. 福岡の各局と検証委員会との「意見交換会」開催

1月) 1. 原発事故による放射能が日本各地の食事に与える影響を検証したデータに誤りがあった NHK『あさイチ』
2. テレビ東京『ありえへん∞世界』の対応報告書
3. その他

2月) 「東海テレビ放送『びーカンテレビ』問題に関する提言」についての各局対応報告書のまとめ

3月) NHK 松山放送局『おはようえひめ』不適切テロップについて

1.8.6 最新の事例

- 朝日新聞が「四国電力が横浜火力発電所の自主点検を怠っている」という虚偽の記事を配信、四国電力の抗議を受け解禁 (問題の記事は2012年4月9日配信)

- 毎日新聞が台風で折れてすでに切り株になっている桜の木が「花見客でぎわっている」という架空の記事を配信、土浦市の抗議を受け謝罪 (問題の記事は2012年4月10日に毎日新聞茨木県版に掲載)
1.9 課題

- 教科書 [2] に記載された電気学会の倫理規程を通読せよ。
- 配付資料に記載された電子情報通信学会の倫理規程を通読せよ。
- 事例 II(福知山線事故) を読み、28 ページ① について考え、見解を述べよ、まわりの人と議論してよいが、自分の言葉で考えをまとめること。
2 技術者の倫理とは

2.1 前回の課題から

2.1.1 挙げられた改善策（昼間主）

- オーバーラン等の罰則見直し
- ダイヤ改善
- 周辺機器（防護無線等）の保守をきちんとやる
- ラッシュアワーには熟練運転手を充てる
- 安全装置の設置
- 線路の再設計
- 制限速度の変更
- 問題が起きたら、早く、正確に、連絡する
- 日勤教育の改善、内容を合理的なものにする
- 運転手のスキルアップをはかる
- 自動運転にしたらどうか
- 適正がない運転士には運転させるべきでない
- 副運転士を付ける (?)
- 倫理規定の見直しが必要 (?)
- 本人の意識の問題が大きい (?)
- ダイヤにゆとりを!(?)
- 運転手の徳教育 (?)
- 沖縄の企業は速さより正確さを重視しているので内地企業にも見習ってほしい (?)

2.1.2 挙げられた改善策（夜間主）

- 安全装置の設置（ヒューマンエラー防止）
- 不合理的日勤教育の改善
- 線路の再設計
- シミュレーションによる事故の予測
- 社員教育の充実
- 運転手のパニックを想定すべき
- 運転手を複数にする (?)
・運転手の心のゆとりが必要 (?)
・全体的に安全への配慮が足りない (?)
・ダイヤ改善し列車間隔を空ける (?)
・運転手の道徳教育 (?)
・熟練した高齢者雇用 (?)

2.1.3 追加コメント
・過密ダイヤは人口過密原因、列車本数を減らすと運行は極度に混雑する; 要するに輸送力の確保と安全な運行のあいだにトレードオフがある
・人口過密には高い経済効果があり、そのため人々は都市に吸い寄せられる; 流れを変えることは困難
・列車運行が遅れると多くの人に迷惑がかかる (飛行機に乗れなくなった、という事態を考えてみればよい); よって、オーバーラン等の問題が発生した場合、時間厳守と安全の確保とのあいだにトレードオフが発生する

2.1.4 コメント欄から
昼間主
・「興味を持った」という意見あり
・法律について概説するという予定についても歓迎する声があった
・講義で「マスメディアは信用できない」と言いながらマスメディアの情報を利用するのは矛盾ではないか?
 - 「マスメディアの情報を使わざるを得ないことも多いが、鵜呑みにするのは危険」というのが前回の講義の主張
 - 「マスメディアがどう報じたか」と問題にするときには報道を引用する (事実がどうであったかは別問題)

夜間主
・「興味を持った」という意見が多かった
・半年間よろしくお願いします。
 ⇒ いえいえこちらこそ。
・昨年度の成績は?

<table>
<thead>
<tr>
<th>受講者数</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>51</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
・マスメディアの姿勢は変だと思う
 ⇒ 前回の講義での述べたように、同様の見解が日本全体で急激に広まっている模様
・「見解を述べよ」の書き方がわからない、例がほしい
 ⇒ 悩んでもらう趣旨の出題なので例は出さない。 (自分なりに) 論理系に考えれば OK
2.2 今回の講義の構成

- まず一旦教科書から離れて倫理的な考え方について分析する
- 続いて教科書にしたがって技術者の倫理について述べる
- 設計に関する説明は本学科では「エンジニアリングデザイン」の講義で詳しく扱うので略す
- USA の倫理綱領に関する説明は日本人には興味深い内容ではないので省く
- さいごに、教科書から離れるが、他で述べる機会がないので、生命倫理について概説する

2.3 倫理に関する分析

- 一旦教科書から離れ、倫理について分析する
- まず典拠となる文献を挙げる:
 - 児玉、功利と直観、勤草書房、2010
 - 小松他 (編), 倫理学案内、慶應義塾大学出版会、2006
 - 大澤、宮台、『正義』について論じます、左右社、2010
 - 小坂、岡部 (編著), 倫理学概説、ミネルヴァ書房、2005
 - 村上、倫理学講義、成文堂、2003
 - J. Rawls (川本他訳), 正義論、改訂版、紀伊国屋書店、2010

2.3.1 倫理的な考え方の分類

- この種の思想は本質的に「宗教的」
- 過去から連続と激烈でときに不毛な論争が続いている
- 主要な論争は、功利主義 vs 直観主義
- 技術者の倫理を考えるにあたり 功利主義 は無視できないので、この対立について説明する

2.3.2 直観主義の説明

- われわれは、本性の上に培わっている能力により、善、義、恵、正直といった性質が他よりも優れている
- また、そういった性質を陶冶すべきであり、その反対の性質を抑圧すべきことを知覚することが
- 正しさの概念に義務の感情が伴うことは、われわれの本性である。また、ある行為がわれわれの義務だ
- と述べることは、それ自体で、またあらゆる帰結とは独立に、その行為を実践するための理解可能で十
- 分な理由になる。そして、われわれが義務の第一原理を得るのは、直観からである。

26
2.3.3 功利主義の説明

- われわれは、善さと悪さについても、またわれわれの感情や行為のどれがより優れているかについても、本性的にはいかなる知識も持っていない。こうした概念は、人間の幸福に役立つ生き方を観察することを通じてしか得られない。善い行為は、人間の幸福を増やすか、人間の苦痛を減らす行為であることである。悪い行為とは、その反対の傾向を持つ行為のことである。そこで、「最大多数の最大幸福」を得ることは、道徳家の最大の目的であり、最高の種類の徳であり、その発現である。

2.3.4 (現代的な) 直観主義の特徴

1. 道徳に関する非自然主義。善さや正しさや道徳的義務は世界の側に実在する客観的かつ独特な性質であり、われわれはそれを独特な仕方で直接的に知ることができる。
2. 非帰結主義。正しい行為（義務）は、その帰結の考察のみによって決まるものではない。
3. 多元論。第一原理は複数あり、その衝突を解決するための明示的な優先原理はない。
4. 常識道徳への依拠。道徳理論の正しさは、抽象的な原則によってではなく、道徳についてのわれわれの常識的見解に照らして判断される。

教科書の立場は直観主義

2.3.5 (古典的な) 功利主義の特徴

1. 道徳に関する自然主義。善さや正しさや道徳的義務などを独特なものとは考えない。
2. 帰結主義。善を最大化する行為が正しい。
3. 一元論。第一原理としては功利原理しか認めない。
4. 常識道徳に相対的重要性しか与えず、それを改善することを重視する。

2.3.6 歴史的な流れ

- 功利主義の祖は Thomas Hobbes (1588～1679); 提案当時はキリスト教的価値観に反するため激しく攻撃された
- 直観主義と功利主義は激しく対立
- 功利主義を克服するための思想として、Rawls の正義論:
 - 普遍的な正義が存在すると主張 ⇒ 後年それを撤回; 「世界にはいろいろな伝統があるけれど、西洋世界のものがいちばんよいと自分は思う」
- その他、M. J. Sandel の「リベラリズムと正義の限界」など
- 「ドイツの多文化主義は完全に失敗した」(独メルケル首相); 混乱するスウェーデンとオランダ
- 功利主義にも若干の「改良 (?)」版: 規則功利主義など

27
2.4 技術者の倫理が注目される理由

- 技術者は社会から次のような事柄を期待されている
 - 科学技術の危険を防止
 - 公衆を災害から救う
 - 公衆の福利を推進する
- 「何をなすべきか」というのは倫理の問題

2.4.1 科学技術の危険を防止

食品の安全と事故

- HACCP (国際規格) による工程管理, 万全ではない
- グループおせちの例, 国内の食品加工業者の中には極めて不潔な環境で作業をしているものも
- 中華人民共和国の新鋭工場は衛生的, でも毒ギョーヤ, カメラで作業員を監視（さばるから）
- 韓国でパンの中から食いすぎた鼠が, という事例; 同種の事故は国内でもあるらしいが, 消費者の手に渡る前に処分されることが普通
- ベトナムの煎餅工場, 雑巾のような不潔な布で海苔をべたべた

地球温暖化　:

- 技術倫理ではよく取り扱われる話題だが...
- 2009 年に捏造がばれた!!
- 地球温暖化については第 14 回で詳しく取り上げる

日本経済新聞: 「急」地球温暖化データにねつ造疑惑 2009/11/26 7:00
気候変動に関する政府間パネル (IPCC) が採用した, 人為的な地球温暖化の有力な証拠とされるデータにねつ造の疑いがあることが分かり, 先週末から欧米主要メディアの報道が相次いでいる, かつてのウォーターゲート事件をもじった「クライメートゲート (Climategate)」という言葉も作られた。来月デンマークのコペンハーゲンで開かれる国連気候変動枠組み条約締約国会議 (COP15) に影響が及ぶ可能性がある。

疑惑の舞台となったのは, 国際的な温暖化研究の拠点のひとつである英イーストアングリア大学。何者かが気候研究ユニット (CRU) のコンピューターに侵入し, 1996 年から最近まで CRU が外部とやり取りした 1000 通以上の電子メールをハッキングして匿名サーバーに置いた。さらに, 温暖化疑惑派のブログなどにその存在を知らせ, メールの内容が明るみに出た。

そこで注目されたのが有名な「ホッケースティック曲線」だ。過去 1000 年間にほぼ横ばいだった温暖, 温室効果ガスの排出額が増えた 20 世紀後半に急上昇させることを示す。IPCC 報告書でもたびたび引用されるが, あいまいなデータ処理が以前から問題視されていた。メールの中で, フィル・ジョーンズ CRU 所長は 1960 年代からの気温下降を隠すことで, 80 年代からの上昇を誇張するデータの trick(ごまかし) があったことを示唆している。

ジョーンズ所長らは流出した電子メールが本物であることを認めたうえで, 疑念について 24 日に声明を発表。「trick とは新データの追加を意味する言葉で, ごまかしではない」などと説明している。
さらにメールでは、2001年にまとめられたIPCC第3次報告書の序文執筆のひとりだったジョーンズ所長が、懸念派の学者に対して「報告書に論文を掲載しない」「論文誌の編集者にはずす」「CRUのデータにアクセスさせない」といった手段を加えたことが示されている。
欧米には懸念派のウェブサイトやブログが多数あり、クライメートゲートについて盛んに議論されている。メール流出はハッキングでなく、COP15を搭乗することを目的にした内部告発者の申し出ではないかとの見方もある。

COP15は京都議定書に代わる温室効果ガス削減の国際合意の形成が目指すが、先進国と途上国との対立は激しい。横浜国立大学の伊藤公紀教授は「IPCCが科学的な知識を用いなかったという不透明が広まれば、交渉はさらに拡大する恐れがある」と指摘している。

2.4.2 公衆を災害から救う

- 教科書で取り扱われている事例は2種：
 1. 日本海中部地震
 2. 有珠山・三宅島噴火
- 東日本大震災も予想はあった模様（公開前だっただけらしい）
- 最近、地震学者がさかんに大地震の予想を発表しているが、現在の科学の水準では従信性の高い地震予知は不可能

2.4.3 公衆の福祉を推進する

- 教科書で取り扱われている事例は1種：
 1. 東京・埼玉80万戸停電
- 新幹線ももっとも成功している例：全般に日本の鉄道システムは優秀
- 水道もおおむね優秀、ただし放射性ヨウ素の問題で信用を落とした

2.5 安全確保の潮流

- 産業革命後期: 事故多発, 保険料高騰, 危険が高いほど保険料も高い ⇒ 安全確保へのインセンティブ
- 事故を防止するための体系的手段: 工業規格 (USA)
- 計統的品質管理 (USA), 日本は敗戦後に導入
- 技術者の倫理との関連: PE法 (USA,1907), 技術士法 (日, 1957)

2.6 技術者倫理の特徴

- 科学技術と関係がある
- グローバルな共通性がある
- 実践的である
2.7 生命倫理

典拠:
- 甲斐編, レクチャー生命倫理と法, 法律文化社, 2010
- 马渉, 倫理空間への問い, ナカニシヤ出版, 2010
- 加藤 (編集代表), 応用倫理学事典, 丸善, 2008

2.7.1 背景

ゲノムレベルで個人の情報が解析可能な時代になり, 誕生から死まで, さまざまな問題が発生している。

2.7.2 生命倫理の概要

- 医療倫理と研究倫理を分けて考えることもある
- 基本原則は「人間の尊厳」と「人権」
 - 人間の尊厳: 人間とは何か, いつから人の生命は始まるか, 生きることの意味は何か, いつ人は死を迎えるか といった問題
 - 人権: 研究の自由と患者・被験者の保護の 2 側面があり, これらはしばしば対立する; インフォームド・コンセントが重要

2.7.3 具体的な問題

- ヒトゲノム研究: 「究極の個人情報」, インフォームド・コンセント, プライバシーの保護, 機密性保持, 知る権利と知らない権利の保護, 遺伝情報に基づく差別の禁止などが重要
- 再生医療: ES細胞を使う人と動物のキメラができてしまう, iPS細胞は安全性に課題
- クローン技術: 個体としての人クローンはどの国でも禁止, 個体に至らない人クローン胚は容認する国も
- 生殖補助医療: 人工授精, 第 3 者による卵子提供, 代理母など
- 出生前診断・着床前診断
- 人工妊娠中絶: 中絶の道徳性, 胎児の道徳的地位, 胎児の権利と女性の権利の葛藤
- 臓器移植: 臓死の判定, 臓器売買, 移植ツアーの問題
- 人体実験
- 終末期医療: 延命と安楽死, 尊厳死
- 動物実験: 「動物福祉」への配慮
- トリアージ: 大規模災害等で人員が限られているとき, 患者を緊急度に応じて分類すること; 不幸にして災害に巻き込まれたときに知らないと現場を混乱させる可能性があるので分類を述べる。
<table>
<thead>
<tr>
<th>優先順位</th>
<th>識別票</th>
<th>分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>赤</td>
<td>最優先治療群 (重症群)</td>
</tr>
<tr>
<td>2</td>
<td>黄</td>
<td>待機的治療群 (中等症群)</td>
</tr>
<tr>
<td>3</td>
<td>緑</td>
<td>保留群 (継承群)</td>
</tr>
<tr>
<td>4</td>
<td>黒</td>
<td>死亡群</td>
</tr>
</tbody>
</table>

● エンハンスメント: 能力や性質の改善を目指して人間の心身に医学的に介入すること

 - 身体的, 知的, 道徳的なものに 3 分類される
 - 受精卵, 遺伝子への修正的介人を含む; 親が子供の性質や能力を遺伝的に設計することの技術的
 可能性 (「デザイナー・ベビ」)

中華人民共和国の事例

移植手術用の臓器, 大半は死刑囚から 中国 2009年08月26日 20:07 発信地:北京/中国
AFP BBNews http://www.afpbb.com/article/life-culture/life/2634459/4496756

【8月26日 AFP】中国の国営英字紙チャイナ・デーリー（China Daily）は26日, 同国で行われ の臓器移植手術で使用される臓器のうち, 65％以上が死刑を執行された死刑囚から摘出されたものだと伝え, この状況について, 中国衛生省の黄潔夫（Huang Jiefu）次官は非常に不適切だと非難している。

この報道で, これまで知られていたなかった中国の臓器移植産業における死刑囚の臓器の役割が明るみになった。同紙によると黄次官は, 死刑を執行された死刑囚の遺体を「臓器摘出元とすることが適切でないことは明らかだ」と述べた。

一方, 中国が長らく依存してきた死刑囚の臓器利用を減らそうと, 中国赤十字社（Red Cross Society）は 25 日, 中国全土での臓器提供システムの構築に着手した。中国では, 移植希望者リストの順番を無視して, 裕福な希望者を優先するために臓器の不正売買がまん延しているという。赤十字社の新システムはこうした状況の撲滅を目指すとしている。

中国では2007年, 死刑囚の同意なしに死刑執行後に臓器が摘出されているとの批判を受け, 臓器移植の規制が施された。この規制のもとでは, 臓器の不正売買の禁止だけでなく, 高額を支払う外国人希望者による「臓器移植ツアー」も禁止されている。また死刑を執行された死刑囚は, 親族にしか臓器を提供できないことを規定している。

しかし, この規制も長らく続いてきた慣習を抑制することができなかったという。同紙は, 今でも規制を無視して多額の利益を得る人々がいると伝えている。(c)AFP

2.7.4 インフォームド・コンセント

● 字義は「情報に基づく同意」

● 理念は以下の 2 点:

 - 自己決定権・自律権の尊重
 - 患者の生命・健康の維持・回復

● 成立要件は以下の 3 点

 - 同意能力: 患者・対象者に同意能力があること
2.7.5 倫理問題に対処するためのシステム

- 日本では倫理審査委員会が担当
- 研究審査システムの脆弱さが指摘されている
- フィクションではあるが、

 Jonathan Swift, ガリヴァー旅行記
 の「ラグナク渡航記」の節で取り扱われている「不死人間」の記述は、終末医療の現場そのもの。興味がある者は読んでみるとよい。
- 同じくフィクションであるが、

 P. K. Dick, 「まだ人間じゃない」 (浅倉訳, ハヤカワ文庫)
 では、人工中絶の問題が取り扱われている。ある種の「恐怖小説」である。興味がある者は読んでみるとよい。
2.8 課題

教科書 [1], 26 ページの討論 2 (技術者倫理の意義) について考え、概略を述べよ。まわりの人と議論してよいが、自分の言葉で考えをまとめること。
3 組織のなかの一人の人の役割

3.1 はじめに

- 今回（第3章）と次回（第4章）の講義で問題になるのは、
 - 個人の帰属意識（何に対して忠実であるか）
 - 利益相反や行動規範の矛盾
- 教科書の記述は事例中心だが、事例の検討に入る前に考え方について整理しておく
- 教科書では利益相反は第4章で解説されているが、第3章の事例（チャレンジャー号事故）の分析に関係するので、説明を前倒しする

3.2 前回の課題（技術者倫理の意義）から

3.2.1 挙がった事例等：昼間主

- 自動車の運転支援システム関連
- 交通事故関連
- 噴火・地震予測: 重要、難しい
- 地球温暖化/寒冷化: 予想は難しい、「地球温暖化」を盲信する人もいる模様（講義第13回で取り上げる）
- オゾンホール（講義第13回で取り上げる）
- 起こりうる問題を予測しておくことはつねに必要
 担当者コメント: コストその他いろいろ考えるべきことがある（予防の倫理、今回の講義内容）
- 利益とリスクのバランスを取ることが必要
- 「製品を品質を高く保つ」ことがある種の倫理
- 工程管理、品質管理が重要
- 災害対策全般
- 天気予報、台風関係: 物が飛ぶ事故、停電と復電など、復電の遅さに対する不満、復電の所要時間等に関する広報が必要
- 洪水
 - 地震、津波関連: 予測、事前の備え、緊急避難体制、復旧、情報伝達、速報がパニックを誘発する危険
 担当者コメント: 地震のときには、ガス管・送電線が破損していることがあり、このような状況で復電すると爆発するため、「すぐ復電」というわけにはいかないこともある
- 携帯電話: つながらない場合の対策、電磁波対策
- 原発: 「想定外」では済まない、情報公開が必要
- 有明海の汚染
- コンピュータが日常生活に溶け込むようになった
・電力系統・機械等の安全装置
 担当者コメント：安全工学の話は後学期のエンジニアリングデザイン講義で取り上げる

・公害全般

・四日市ゼンソク：議論の後半で議論する。担当者コメント：四日市ゼンソクは（被害が発生したのは不幸なことだが）公害対策が極めてうまくいった例（第13回で講義）

・工場の廃液処理

・環境負荷を考慮して工場等の操業体制を見直す

・九州新幹線

・沖縄の交通網：車中心社会は問題

・ロボットの取り扱い

・使う側の倫理が必要

・自然言語処理を用いた災害情報の提供

・ドコモのしあい携帯電話

・デザイン重視で居住性の悪い建物

・建築物の手抜き工事

・間かずの踏切

・ある程度の危険は進歩の代償として容認すべき

・エネルギー枯渇

・食の安全と輸入品

・消防設備

3.2.2 挙がった事例等：夜間主

・落雷による停電

・科学技術の進歩自体は良いが今の生活を良くすることは程々にすべき

・交通事故、予測と予防が重要
 担当者コメント：コストその他いろいろ考えるべきことがある（予防の倫理、今回の講義内容）

・原発

・地震、津波

・台風

・情報公開が重要

・公害
 担当者コメント：公害の話は第13回で詳しく取り上げる

・軍事利用を防ぐ
 担当者コメント：軍事技術は難しい問題だが（政治性が高いためこの講義では取り扱わない）、世界は平和ではなく、日本に向けて核ミサイルを配備している国がある事実を直視すべきだと思う
3.2.3 「地球温暖化」関連のコメント

- ここ100年あまりのあいだ、地球の平均気温は上昇 (第13回)
- 資源の節約自体は結構なことだが、地球の平均気温の上昇とCO₂濃度との因果関係は科学的に立証されているわけではない
- 「温室効果ガス」をめぐる議論は、排出量取引の関係で国際政治の問題となった (こうなると、もはや科学技術はあまり関係ない)
- マスコミの洗脳じみた宣伝は問題
- 事実 (データ) に基づいて客観的に考え、科学的な新知見があればそれに基づき速やかに考えを改めてほしい

3.2.4 コメント欄から

昼間主

- この書き方で良いでしょうか？
 ⇒ 問題なし
- 地球寒冷化の話で驚いた
 ⇒ 暖化同様、こちらも不確実な話なので注意
- 両面印刷は困る
 ⇒ 困ると言わても困る；若干読みにくいと思うが、資源節約重視で進める (倫理の講義だし･･･)

夜間主

- 巧利主義は重要だが納得が難しい
 ⇒ マンガだと「俺は何も見捨てないぜ!!」とかできちゃうけど現実には無理
- 考え方が難しい
 ⇒ 「難しい」＝「納得できない」のことがわりあい多いが、倫理問題は価値観の問題であるので、納得できない部分が発生することは一向に構わない
- 課題が難しい
 ⇒ 今回の課題は少し書きにくかったかも
3.3 技術と社会

（典拠） 加藤尚武編，応用倫理学事典，丸善，2008

技術と社会のかかわりに関するいくつかの考え方：

- 技術中立論：技術自体は善いそれではもなく，技術を用いる行為は技術を用いる目的次第で善にも悪
 もになる，という考え方
- 技術決定論：科学者が自然法則を見出し，技術者がそれに基づいて技術的発明を行い，それが社会の
 質を一変させて新しい価値を生み出すという考え方（技術が社会を一方的に規定すると見做す）
- 社会構成主義：技術決定論の考え方に加えて，技術それ自体もまた社会の文化や価値観の影響下に
 最終的な形を決められてゆく，という考え方

3.4 技術者の倫理の社会に対する役割

（典拠） C. E. Harris et al.（日本技術士会訳編），第3版 科学技術者の倫理，丸善，2008

- 技術者の倫理の重要な役割のひとつは予防の倫理
- 行為の結果を可能な範囲で予測し，危機を未然に防ごうとすること
- 医療（社会福祉）における予防と類似した考え
- 予防には，「疑わしさはとりあえず罰する」という側面もあり，副作用もある
- 予防のためには，リスクアセスメント，リスクマネジメント，リスクコミュニケーションの3要素が重
 要，詳しくはエンジニアリングデザインの講義で述べる

3.5 社会福祉における予防の倫理

（典拠） 加藤尚武編，応用倫理学事典，丸善，2008

- 「予防にまざる治療なし」は神話
- 予防には利益と不利益があることが普通
- 予防の対象となる人はほとんどが健康であり，予防から利益を受ける人はそのごく一部
- 予防には通常の医療より厳しい倫理的判断とインフォーマード・コンセントが必要
- 健康診断（とくにX線検査）が有効か否かについてはつねにいろいろな議論がある

3.5.1 予防の利益と不利益

<table>
<thead>
<tr>
<th></th>
<th>利益</th>
<th>不利益</th>
</tr>
</thead>
<tbody>
<tr>
<td>全員</td>
<td>なし</td>
<td>検査にともない不便・不安・不快</td>
</tr>
<tr>
<td></td>
<td></td>
<td>検査の費用</td>
</tr>
<tr>
<td>一部</td>
<td>介入による健康改善</td>
<td>検査の誤りによる健康障害</td>
</tr>
<tr>
<td></td>
<td>介入による生活習慣改善</td>
<td>ラベル効果</td>
</tr>
<tr>
<td></td>
<td>安心の獲得</td>
<td>介入にともなう健康障害</td>
</tr>
</tbody>
</table>

37
ラベル効果 異常や病気があると診断されるだけで、大した状態でなくても、心理的あるいは生活上の悪影響が出てくること

技術でも予防には似たような利益・不利益がある

3.6 人間関係

- 人は関係性の中で生きている：自分で選んだ関係と、なりゆきで決まった関係がある
- どのような関係性の中で生きるかは人それぞれ
- 関係性から、いろいろなことが発生する：
 - 義務的
 - 情緒的
- しかしながら、義務等のあいだに矛盾がある場合が問題

3.7 技術者の倫理における利益相反

(典拠) 加藤恵武編、応用倫理学事典、丸善、2008

- (利益相反の定義) 顧客・依頼人や会社などが技術者に寄せる期待と技術者の立場が対立してしまうこと
- 利益相反の解消:
 - 特定の個人の感情、利己主義が原因の場合は、原理的には原因を取り除ければよい
 - そうでない場合には一般に困難

3.8 技術者の倫理における利益相反

3.8.1 公私混同型の利益相反

- たとえば管理技術者がクライアントに有利な施工業者より肉親を優先するような場合
 - 現実的相反（すでに相反が発生）
 - 潜在的相反（相反が発生する可能性がある）
 - 外見的相反（第3者に疑念、不安を抱かせる場合）
 (例) 優秀な人材を探したら、たまたま息子だった
3.8.2 公私混同型の利益相反の解消

- 現実的相反は技術者の忠実義務違反, 排除可能
- 潜在的相反, 外見的相反には (本当に不適な行為がないのであれば) 情報開示で対応

3.8.3 クライアントや会社への隶属・従属型の利益相反

- クライアントや会社などがデータの挿造などを要求した場合
 - 技術者の利己主義は慣行の墨守, 保身といった形を取る
 - 侵害されるのは (この時点では) 漠然とした「公益」
 - 倫理学者は「クライアントや会社などを説得すべき」「反社会的行為だから断るべき」と言うが...

3.8.4 忠実義務と公益確保の相反

- クライアントや会社などの依頼そのものにルール違反はないが, その仕事の結果が結局公衆の安全・健康を害するおそれがある場合
 - ルール違反ではないので説得等は困難
 - 忠実義務の問題あり, 断ることも困難
 - 告発という手段もありうる

3.8.5 公益内相反

- 公益をめぐる主張どうしだが相反する場合:
 安全基準はこれに相当すると思われる:
 - コストが安い (公益)
 - 安全性が高い (公益)
 一般に, 安全性を高めるとコストも上がってしまう

3.9 守秘義務

- 本節の主題は組織の中で人のふるまいなのであるが, 組織の中で働く人は自分の知る情報を無条件に組織外に出せるわけではない
- 従業員は守秘義務を負う
 ⇒ 倫理問題を考えるにあたり, 守秘義務についても検討する必要がある
3.9.1 守秘義務とは (1)

(以下の典拠) R. Schinzinger, W. Martin (西原監訳),
工学倫理入門, 丸善, 2002

- (雇用者または依頼者にとって)秘密にしておくことが望ましいと思われる, すべての情報の秘密を守る義務
- 倫理的には守秘義務は転職しても継続する;
- 現実的には, 解雇された元従業員による機密の漏洩はありふれた事件
- 違法行為に関係する可能性があると思われる事項に関する守秘義務の取り扱いは専門的な問題

3.9.2 守秘義務とは (2)

- 守秘義務の詳細な内容は一例に契約による
- 日本では, 守秘義務の根拠を労働法に求めることができる
- 時間配分の関係で労働法に関する説明は次回に回す

3.10 チャレンジャー号事件

- 1986 年 1 月 28 日にスペースシャトル「チャレンジャー」が爆発
- ブースター・ロケットのシール部品 (O リング) が弾性を喪失し, ガスが漏洩して燃料タンクに引火したとの推測
- 問題の部品は Morton Thiokol 社製
- 同社技術者の Roger Boisjoly が危険を訴えていたが, 採用されなかった
- 礼野, 改訂版 技術者の倫理, 放送大学教育振興会, 2009 にしたがって時系列を説明

3.10.1 事件の時系列: 技術者の視点から

1. 1985 年 1 月, Boisjoly が打ち上げ終了後のディスカバリーハ号の点検で 2 重の O リングのあいだのグリスの焦げを発見, 1 次 O リングからガスが漏れており, 2 次 O リングでガスが止まらなければ爆発の危険があったことを認識

2. Boisjoly は原因は打ち上げ時に気温が低かったことであると推測し, 上司に報告; 上司は NASA に報告

3. Boisjoly は NASA に呼ばれて説明し, 低気温での打ち上げ中止を提言したが, NASA は拒否, NASA は, 次の打ち上げは 4 月であることから, Boisjoly にこの問題を強調しないよう要求, Boisjoly は要求を呑み, O リングに関する検討を継続

4. 1985 年 6 月, Boisjoly 4 月に打ち上げられたチャレンジャー号の検査で O リングの不良の微候を発見, 設計見直しのための非公式のチームが組まれたが, 結局会議は召集されず

5. Boisjoly, 会社幹部に O リング問題への対応を要求するメモを渡す, メモは技術担当副社長にわかり, 検討チームは発足したが, 実質的な仕事は何もせず
6. 問題のチャレンジャー号打ち上げ事前、打ち上げ地の夜間気温が摂氏-8度との予報を知り、Boisjolyは技術担当副社長に打ち上げ延期を進言、技術担当副社長も危険を認識；NASAとの会議およびMorton Thiokol社における長時間の会議で、経営上の理由から、結局打ち上げが決まった⇒爆発事故

3.11 企業倫理

- チャレンジャー号が危険情報を無視して打ち上げられたのは「経営上の判断」
 - Morton Thiokol社にとっては社運がかかっプロジェクトだった
 - NASA(Morton Thiokol社の顧客)がスペースシャトルを打ち上げたがっていた
- 企業には倫理はあるのか、ということが問題になる

3.11.1 企業倫理をめぐる論争

(典拠) 加藤尚武編、応用倫理学事典、丸善、2008

- モラル・パーソン説 (フレンチ、1979):
 - 主体とは意図をもって行動する存在のことをいう
 - 主体であるものはすべて道徳的主体である
 - 企業は主体である：企業が行動する存在であることは明らか、意図を持っていることは、企業が内部に意思決定機構を持つことからわかる
 - したがって企業は道徳的主体である

- ビジネス＝ゲーム論 (ラッド):
 - 企業はフォーマル組絵の一種である
 - フォーマル組織は特殊な目標 (利潤)を最大限に達成するために行動しなければならない
 - 特殊な目標を最大限に達成することは道徳規範に従って行動することを認めないことである
 - 道徳規範に従って行動できるのは道徳的に主体となるための必要条件である
 - したがって企業は道徳的主体とはなり得ない

- 道徳的企業の条件 (ドナルドソン)
 - 道徳的理性をもって意思決定をおこなえること
 - 企業行動の結果が具体的な形で現象する前に、その前提にある製作やルールの構造を意思決定プロセスにおいてコントロールできること

3.11.2 経営者の責務

- 経営哲学は会社によって違う
- 株式会社では経営者は株主に配当をもたらす責務を負う
- 会社そのものの存続も経営者の責務
- 伝統的な日本的経営では、従業員の安定雇用が経営者の責務であると考えることが多かった
・技術者の倫理では Boisjoly を英雄視することがあるが、経営上の責任も重要
・打ち上げを決めた経営者の判断を避けていると断言することはできないように思われる（事故が起きた、というのは「後知恵」）
・リスクマネジメントは必要だが、意思決定にはつねに不確実さがつきまとか

3.11.3 関連する事例：東海地震では避難命令を出せるのか？

・避難命令を出すとそれだけで莫大な経済的損失が発生する
・避難命令を出して地震が起きなかったとき、命令を出した政治家がその責任を取れるかという問題が発生する

<table>
<thead>
<tr>
<th>地震なし</th>
<th>地震あり</th>
</tr>
</thead>
<tbody>
<tr>
<td>避難命令 なし</td>
<td>A 円</td>
</tr>
<tr>
<td>避難命令 あり</td>
<td>B 円</td>
</tr>
<tr>
<td>B 円 + C 円</td>
<td>C 円</td>
</tr>
</tbody>
</table>

• 功利主義的見地に立てば、たとえば…地震の発生確率を p とし、地震発生時の被害額が右のように予測されていたものとする。このとき、避難命令なしの場合の確率的な被害額は pA 円、避難命令ありの場合の確率的な被害額は (1 − p)B + pC だから、pA > (1 − p)B + pC なら避難命令を出した方がまし、とはいえも、一般に定量的な見積もりは困難

3.12 集団思考

・組織を硬直化し、その合理的かつ機動的な動きを阻害する要因の典型
1. 失敗しても集団は不死身
2. 強度の「われわれ感情」、外部を敵視
3. 合理化（責任転嫁）
4. モラルの幻影（集団の内部規範を無批判で受け入れる）
5. 自己検閲（波風を立てない）
6. 満場一致の幻影（沈黙を賛成と解釈する）
7. 不一致の微候を示す人に圧力をかける
8. 異議を唱える見解が入ってくるのを防ぐ
3.13 課題

教科書 [1], 47 ページ論 2(自分の経験や見聞の範囲での集団思考の例) について考え、概略を述べよ。まわりの人と議論してよいが、自分の言葉で考えをまとめること。
4 モラル上の会話関係

4.1 前回の課題 (集団思考) から

4.1.1 亜間主

- 電力会社: 集団は不適身
- 学生実験: 少人数の方がうまくいく
- 演習: 主張が強い人に流される
- 講義: 「質問はいか」と聞かれると皆黙ってしまう。黙っていると反論・別解等がないと見放されるのは良くない
- サークル・部活動: 人と違うことを言いにくい。少数意見が無視される。誤解に遭ったとき責任のなすりつけ合いになった。部長のつるし上げ。他のチームを敵視。部長が仕切る。自分たちに対する根拠のない自信。チームプレイにおける責任転嫁
- 友達と行動するとき: 多数決を強要される。個人の意見が出にくくなる。本人にとって愉快でないあだ名が定着する
- クラスの行事: 少数意見を排除。中心的人物が仕切る。クラスで作った映画がクソつまらなかった
- アルバイト: 上司が同意するよう圧力をかける。無理な業務命令に抗議できない。少々の失敗は平気という感覚、震災時にバイト先の東京から沖縄に返ったとき少数意見を無視した (当事者が複数いる模様)
- 違法駐車: 「みんなで渡れば怖くない」
- 未成年の飲酒: 「みんなで渡れば怖くない」
- 飛行機の整備: 集団思考が整備不良を誘発する
- マスコミ: フジテレビへのデモが一切報道されない
- 毒ギョーザ: 中華人民共和国が「毒は日本で混入された」と主張
- 女性の集団行動
- 原発事故での政府・企業・原子力安全委員会の責任の押し付け合い
- 国会での政治家の責任の押し付け合いが酷い
- 女性が取り巻に刺されたのが見殺しにされたのは集団思考では
- オウム真理教は集団思考のデパート
- 誰かの悪口が広まると悪印象が共有される
- スピード違反等で発覚されると「みんなやっている」といった類の合理化を試みる
- みんなで間違えば平気
- 中学校へのお菓子の持ち込み
- 離島では集団思考が強い (閉鎖的)
- 「空気を読む」というのは自己検閲
いじめは集団思考

韓国により集団思考が蔓延する

不良グループの変な服

トイレットペーパー等の買い物占め（群衆心理）

大学教員が独立行政法人化のマイナス面について国民に知らないのは欺瞞では？ (?)

韓国の竹島占領 (?)

北朝鮮の独裁 (?)

集団自決の記述削除：不都合なことを隠す圧力 (?)

無免許運転 (?)

船場吉兆の残飯懐石料理や天気予報が集団思考なのでというコメントがあったが、憶測で書くのはちょっと...

その他、集団思考に関する一般形なコメント、教科書の事例に関するコメント

4.1.2 夜間主

アルバイト：飲食店における知人への顕著、不快な仕事を押し付けられた、サービス業業然の雰囲気

集団は内輪で盛り上がっているだけでは？

部活：部長のごり押し

高校の職員会議：事なかれ主義や少数意見の圧殺

クラスの行事：見掛け上の満場一致

ヤンキーや強そうな人に付和雷同

珍走団人々

バス事故：ツアー会社の責任転嫁

国中では個人の意見は無視できるほど小さい

いじめ：隠蔽圧力などがある

戦争は集団思考では (?)

チャレンジャー号事件に関するコメント

4.1.3 コメント欄から

マンガの話が良くできるが担当者（半場）はマンガ好きなのか？好きなマンガは？
⇒ 昔からかなり読む（最近減ったが）。というか、字が書いてあるものは手当たり次第に読む。

企業内でも技術者の立場は弱いのか？
⇒ 当然の話だが役職による。低い役職の技術者の立場は弱い。
4.2 倫理が作用する限界

4.2.1 合法と違法の境界

- 教科書 52 ページ、ナノプレートの半透明カバー
 違法とはいえない例、モラル上はどうか
- 電波法、小型無線カメラ (1.2GHz)
 - 電波法違反、航空無線の帯域なので危険、販売規制はなし
 - 販売店「電源を入れなければ合法」
 - 2.4GHz 帯は状況が違う

4.2.2 合法と違法の境界 (つづき)

- フル電動自転車
 - 電動アシスト自転車: 人力と動力の比率が 1:1 を超えてはならない、法律上は自転車と同一扱い
 - フル電動自転車: 人力と動力の比率が 1:1 を超えるもの、法律上は原動機付き自転車 (原付) と同一扱い
 - 雑貨店、ネット通販等がフル電動自転車を電動アシスト自転車として販売、公道での使用 (違法) が問題になっている

4.2.3 違法行為を助ける可能性がある技術

- Winny, Share 等のファイル交換ソフト: 不正コピー・ファイル流通の温床となるリスク
- SoftEther: 初心者でも簡単にインターネット上に仮想ネットワークを構築できる; ファイアウォールを無効化

4.3 コミュニティ

定義 1 (ポズナー) コミュニティは人々の集団であって、その集団のメンバーの大部分が、(1) 互いに連帯感を持ち、(2) 過去にかかのぼって短くない期間にわたり継続しており、未来に向かっても継続すると考えられているような付き合いを互いに享受しているものをいう。

定義 2 (杉本・高城) コミュニティは、互いに同調といえるような、多少なりとも信頼関係にあり、多少なりとも対話できる人たちが、共通の目的のもとに連帯感をもって集まっている集団をいう。

- コミュニティは社会に受容されるとは限らない
 カルト宗教団体のような反社会的コミュニティも存在する
- モラル、倫理はコミュニティに属するものと考えられる:
 - コミュニティに属さない者には適用が困難
 - あるコミュニティのモラルや倫理を他のコミュニティに強制することはできない
- 社会全体に共通のモラルや倫理は成立しがたいが、ある程度は共通の規範といえるものが見られる
4.3.1 技術者のコミュニティ

- 社団法人などといった形を取る
- コミュニティとしての実体がある
- モラル・倫理は成立する

技術者の倫理のめざすもの（杉本・高城） 科学技術が人間生活のあらゆる面に深く関わり、かつ技術者の職業の機会が国際化する現在、技術者一人ひとりが個人として強くなり、技術者のコミュニティとの連帯のもとに、信頼される専門職の社会的勢力として受け入れられるようになることを目指す。

- 技術者の帰属:
 - 技術者のコミュニティ
 - 企業というコミュニティ

- これ以外に
 - 国、地域社会、親族、家族、宗教・思想・政治団体
 - などで、色々

- 相反が発生しやすい

4.3.2 雪印食品と西宮冷蔵の事例

- 雪印食品が産地偽装を保管業者「西宮冷蔵」に指示
- 西宮冷蔵が告発
- 雪印食品は解散
- 西宮冷蔵は取引先が激減して倒産状態 (教科書には記述なし)

雪印を内部告発した西宮冷蔵が倒産状態（2003年7月25日更新）

雪印食品（昨年四月解散）の牛肉偽装事件を内部告発した西宮冷蔵（兵庫県西宮市）が今、倒産状態にある。倉庫（約五千トン）は空っぽ。

同社の水谷洋一社長は昨年一月、雪印食品関西ミートセンター社員らが、同社の倉庫で保管していた輸入牛肉を国産牛肉の箱に詰め替えた偽装を告発した。告発後、荷主が次々と撤退し、食肉業界からの入荷はなくなった。昨年十一月には国土交通省から七日間の営業停止処分を受け、その後業務は停止している。

4.4 私的な人間関係

- 私的な人間関係と公的な人間関係のいずれを優先すべきか、また、衝突が発生したときにどうするか
- 教科書には、家訓と経済事情の衝突、友人関係と職場における信用の問題の衝突の例
- 大学で大学生と教員が頻繁に遭遇するのは、就職活動等における学生の推薦状をどうするかという問題
- うまく解決策はないことが普通
4.5 業務上の隣接関係

4.5.1 技術者の業務形態

1. 被用者: 企業・行政機関等に雇用されて働く。
 仕事で出す名刺における「社名, 役職」の記載にはその人が代理人として働く組織とその人の権限を示す役割がある

2. 受取者: 技術者が事務所等を構えて仕事を受け負う
 - 被用者は雇用契約に縛られ, 自由裁量の範囲は狭い
 - 受取者は自由裁量の範囲が大きい
 受託契約の文言に制約を受ける事項が明示的に記載されていることが普通
 - いずれも, 雇用者あるいは依頼者それぞれのために, 誠実な代理人または受取者として行為することを義務付けられる
 - 公益確保の義務: 公衆の安全, 健康および福利を最優先する

4.6 利益相反

前回説明の通り

4.7 公刑

教科書の定義 技術業のサービスに, 自由な, またはよく知られたうえでの同意を与える場面にはなくて, その結果に影響される人々

藤本編, 技術者倫理の世界, 第2版, 森北出版, 2009 技術者がそのクライアントや雇用者のために一定の力を及ぼすとき, その力の影響を多かれ少なかれ受けるにもかかわらず, その情報や技術的知識, あるいは熟慮のための時間を欠いている人々

- 公衆とは, 要するにインフォームドコンセントを必要とする人々のこと
- 医療の分野では, パターンアズム (医者が患者の保護者であるかのように振るう様式) からインフォームドコンセントへの移行が発生した; 技術の分野でも同様の傾向
- USA では技術者に公衆を保護する責務があることを明示
- 日本では「公」が国・自治体を意味すると解釈されることがあるので要注意

4.8 職業生活と法的義務

- 教科書 [1] には不統合の忠実義務が商法で規定されているという記述があるが, 商法254条の3はすでに削除されている
- 取締役の忠実義務は会社法第355条で規定:
 取締役は, 法令及び定款並びに株主総会の決議を遵守し, 株式会社のため忠実にその職務を行わなければならない。
労働義務 労働者は労働契約により約束された労務の給付義務を負う

業務命令 使用者は、経営を合理的に行うため、組織、職位を定め、労働者を配置し、必要な業務上の命令を発し、指示を与える権限を有し、労働者はそれに従って職務に従事しなければならない

業務命令とは上述の会社の指揮命令権の発動のこと
何でも命令できるわけではないことに注意

職場秩序 労働者は企業秩序を遵守する義務を負う

施設管理権 企業は、敷地、建物、施設等に対する物的管理権限および利用する従業員に対する人事管理権限を有する; 使用者は、これに基づき必要な規則や命令を発することが可能、従業員はこれに拘束される

人事権 一般に、特別の合意がないかぎり、労働者は自己の提供する労働力の使用を包括的に使用者に委ねるものであり、使用者は、この契約上の役務にとどまらず労働者の給付べき具体形労働の種類、態様、場所を個別的に決定し、またその変更を命じうる

安全配慮義務: 使用者は、労働契約に伴い、労働者がその生命、身体等の安全を確保しつつ労働することができるよう、必要な配慮をするものとする (労働契約法第 5 条)

- 使用者には労働者の健康管理義務 (過労死等の防止) がある; これは安全配慮義務の一環
- これに関連し、労働者には自己安全義務 (自らの安全を確保すべき注意義務) と健康保持義務がある

人的環境配慮義務: 協同・協力して適正良好な人間関係を維持し、働きやすい職場環境を相互に形成し、職場規律を守り、企業の円滑な運営を期すべき義務

- セクシャル・ハラスメント、パワープラスメントの防止はこれに含まれる

信義則 労働者及び使用者は、労働契約を遵守するとともに、信義に従い誠実に、権利を行使し、及び義務を履行しなければならない (労働契約法第 3 条 4 項):

- 従業員は、使用者との信頼関係を維持し、脅威的な行為を行わず、企業の利益を侵害し、または侵害するおそれのある行為をおこなわない義務を負う
- 企業外非行も、信頼関係を破壊するという理由で、上記に基づき懲戒の対象となりうる

服務専念義務 労働者は、労働契約によって所定時間中はその労働力を使用者に先渡した時間であるから、その時間中は使用者の指揮命令に服し、その職務に専念する義務を負う。使用者の許可承認なく勝手に業務以外のことに時間を消費することは服務専念義務違反となる。

企業活動完遂義務 従業員は会社に対し、職務の注意をもって誠実に職務を遂行すべき義務を負う
忠実義務 労働者は、主たる義務である労働義務の付随義務として、企業の内外を問わず使用者の利益を不当に害してはならない。

- 労働義務の一要素
- 従業員の職種、職務、地位等によって異なる（管理職のほうが重い）
- 一般に企業の内外を問わず企業の利益を侵害する行動をとってはならない義務として広く成立する

守秘義務 従業員は雇用された職務を遂行する企業の業務上の秘密を厳守する義務を負う

- 内部告発に関連して相反が発生する可能性がある
- 内部告発については第12回で取り扱う

兼業禁止 会社の業務以外の業務に従事するような場合は、使用者の承諾を得なければならない。理由は以下の通り。

- 時間外、休日労働は疲労の回復を妨げるが、適度な休養は労務提供の基礎的条件だから
- 企業の経営秩序、対外的信用、労使間の信義則上の問題
- 競業禁止に抵触する可能性がある（競業禁止については後述）

協力義務 従業員は会社の目的遂行のために協力すべき義務を負う

安全衛生環境整備、能力開発、部下の指導教育等のさまざまな義務が発生

競業禁止（会社法第594条）業務を執行する社員は、当該社員以外の社員の全員の承認を受けなければ、次に掲げる行為をしてはならない。ただし、定款に別段の定めがある場合は、この限りでない。

一 自己又は第三者のために持分会社の事業の部類に属する取引をすること。

二 持分会社の事業と同種の事業を目的とする会社の取締役、執行役又は業務を執行する社員となること。

２ 業務を執行する社員が前項の規定に違反して同項第一号に掲げる行為をしたときは、当該行為によって当該業務を執行する社員又は第三者が得た利益の額は、持分会社に生じた損害の額と推定する。
4.9 課題

1. 教科書 [2], 事例 VI(電力設備の建設) を読み, 53 ページ①について考え, 見解を述べよ. まわりの人と議論してよいか, 自分の言葉で考えをまとめること.
5 技術者のアイデンティティ

5.1 前回の課題 (電力設備) から

5.1.1 昼間主

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>変電所新設</td>
<td>62</td>
</tr>
<tr>
<td>配電系統を増設し新設は延期</td>
<td>16</td>
</tr>
<tr>
<td>その他</td>
<td>7</td>
</tr>
</tbody>
</table>

- A さんの検討は十分 (15)
- 稼働率が100%を超えた場合のシミュレーション
- C さんに代替地の提案を要求
- 建設にかかる時間を調査
 ⇒ 計画時点でわかっている箇 (例: 日本工事営による新坂戸変電所変 4B 増設工事 (変圧器増設) 2003.6 〜 2005.9)
- 近隣都市の発展の可能性などを調査
- 似た例を探して参考にしたらどうか
- 土地を永遠に確保できるわけではないので、できるときに工事を
- 停電による被害の見積りがない
- もっと工夫して説得すべき
- 計画凍結で賛成者に迷惑がかかったことが十分考慮されていない
- 工場等の大口需要が発生する可能性があるか否か調査すべき
- 変電所の事故の確率を検討すべき
- 新設あるいは延期した場合のメリット、デメリットが合理的に比較されていない
- 具体的な経費等を詳しく説明すべき
- 部外者 (活動家) は議論から排除してもよいのでは
- 下手に懐柔策を取ると「盗人に追い銭」になる
- 先送り案について近隣住民の意見を聞くべき
- 先送りにしてもらわれるだけ
- バラマキで近隣住民を懐柔
- こねる人はどうしようもない
- 災害時の供給能力の余裕を考えて判断すべき
- 変電所新設より電力料金値下げを
 ⇒ 重要が逼迫したら値上げしていいのかという問題がある
- 需要地の近くに小規模な発電所を作ったらどうか
・鉄塔を増やすべき (?)
 ⇒ 鉄塔だけ増やしても...
・住民の自己責任だから建設しなくてよい (?)
・代替地を探す (?)
・他の上司など相談 (?)
・第三者機関を入れる (?)
・電力系統の効率を検討 (?)
・住民との対話集会 (?)

5.1.2 夜間主

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>変電所新設</td>
<td>9</td>
</tr>
<tr>
<td>配電系統を増設し新設は延期</td>
<td>4</td>
</tr>
<tr>
<td>その他</td>
<td>2</td>
</tr>
</tbody>
</table>

・A さんの検討は十分 (1)
・もっと住民との対話を
・代替地を探す
・停電による被害を検討すべき
・需要地の近くに小規模な発電所を作ったらどうか
・先送ると工事自体不可能になるかも
・問題が出てから対策するのでは遅い
・建設地は地域住民優先で
 ⇒ 地域住民のあいだに対立があることが問題
・土地だけ買って建築は先送り (?)
 ⇒ 電力会社にとっては負担になるだけ
・C の意見の馬鹿らしさについて議論したかった
 ⇒ C の主張は明らかに不合理なのであらゆる議論する価値もないのでは

5.1.3 担当者コメント

・「停電があった方が人間らしい」は異常なコメント、病院や信号機等が止まれば死者が出る可能性もある；停電すると設備が駄目になる工場もある
・最終的に変電所新設するなら配電系統の増設は無駄なコスト
・将来需要が逼迫したときに企業に変電所を新設する体力があるとは限らない
・電力不足の波及効果 (企業の海外への脱出など) も問題
5.1.4 コメント欄から

- 「学会から追放」は海外なら可能か？
 ⇒ USA の技術士に相当する資格 (Professional Engineer) には除名の規定がある

- 担当者 (半場) はエヴァンゲリオン とか観るのか
 ⇒ 講義とまるっきり関係ない質問はちょっと...

- 雪印食品は本当に解散したのか？
 ⇒ 帝国データバンク (http://www.tdb.co.jp) を見た限りでは社名は残っていない；http://www.i.hosei.ac.jp/ kishimoto/yukizirushi.htm には以下の記述がある。

 2002 年 2 月 22 日 4 月末に解散すると発表
 2002 年 4 月 30 日 解散
 2002 年 5 月 23 日 東証 2 部上場廃止
 負債総額 約 250 億
5.2 今回の講義内容

・職業人にとって、「自分は何のためにここにいるのか」という認識 (アイデンティティ) は重要 (今回の講義の主題)
・まず教科書にしたがい JCO 故事について述べる
・続いて科学技術・技術者と技能者の違い等について述べる (教科書以外の資料も利用)
・次に, International Engineering Alliance の Graduate Attributes and Professional Competencies について述べる (技術者の資格 (次回) と関連)
・最後に, 文部科学省の「大学における実践的な技術者教育のあり方」における技術者の定義を述べる

5.3 JCO 事故

5.3.1 原子力安全委員会の事故報告
事実関係の分析のみで倫理的な分析は不十分

5.3.2 水戸地裁判決

<table>
<thead>
<tr>
<th>JCO</th>
<th>詐金 100 万円</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業所長</td>
<td>禁固 3 年執行猶予 5 年罰金 50 万円</td>
</tr>
<tr>
<td>製造所長・製造グループ長</td>
<td>禁固 3 年執行猶予 4 年</td>
</tr>
<tr>
<td>計画グループ長</td>
<td>禁固 2 年執行猶予 3 年</td>
</tr>
<tr>
<td>職場長</td>
<td>禁固 2 年執行猶予 3 年</td>
</tr>
<tr>
<td>計画グループ主任</td>
<td>禁固 2 年 6 カ月執行猶予 4 年</td>
</tr>
</tbody>
</table>

著者は

・事故の分析には十分な情報に基づいて事故モデルを立てることが必要
・(暗黙のうちに) 新聞では, 記者によって正確で十分な情報が提供されている

と述べているが, 以前にも述べた通り,

福島原発事故以降, 新聞やテレビの報道が捏造と隠蔽だらけでまったく信用できないことが誰の目にも明らかになっている

・誰もがウソをついている可能性があるとき, 「誰を信用すべきか」が問題となる
・基本的には, すべてのものを疑ってかかるべき
・日本原子力研究開発機構のページ
http://www.jaea.go.jp/jnc/news/kaisetu/index.html に報道に対する反論の文書が多数 (JCO事故を含む);
同機構の説明にもおかしなものがあるが, 報道の事実誤認も極めて多い
5.4 科学技術

- 教科書では科学と技術あるいは科学技術; 技術者の自己認識にかかわる問題なので，ある程度詳しく述べる
- 日本語大辞典第 2 版:
 1. 科学および技術の総称. 科学と技術の関連性とその必要性を強く意識し，それをひとまとめに論ずる場合によく使われる.
 science and technology.
 2. 自然科学の成果を実現し，実用化するための技術.
 scientific technology.
- 大辞林第 2 版: 科学と技術. 現代では，おもしろ科学を応用した技術をいう. テクノロジー.
- 広辞苑第 4 版: 記述なし
- 「技術科学」という言葉を使う人もいる; 豊橋技術科学大学, 長岡技術科学大学, 岡山理科大学技術科学研究所, 金沢大学放射線技術科学専攻, ... でもマイナー

広辞苑は国語辞典の代表格として取り扱われることが多いが，辞書として必ずしも優れているわけではない

Concise Oxford Dictionary 11/e

- engineering: (1) a branch of science and technology concerned with the design, building, and use of engines, machines, and structures; the practical application of scientific ideas and principles. (2) a field of study or activity concerned with modification or development in a particular area: software engineering
- technology: the application of scientific knowledge for practical purposes. machinery and equipment based on such knowledge; the branch of knowledge concerned with applied sciences.
- technique: a way of carrying our a particular task, especially the execution of an artistic work or a scientific procedure; a procedure that is effective in achieving an aim.

Cambridge Advanced Learner’s Dictionary

- engineering: the work of an engineer, or the study of this work.
- technology: (the study and knowledge of) the practical, especially industrial, use of scientific discoveries
- technique: a way of doing an activity which needs skill.

Webster’s new world college dictionary 4/e

- engineering: (1) a) the science concerned with putting scientific knowledge to practical use, divided into different branches, as civil, electrical, mechanical, and chemical engineering. b) the planning, designing, construction, or management of machinery, roads, bridges, buildings, etc. (2) the act of maneuvering or managing

56
technology: (1) the science or study of the practical or industrial arts, applied sciences, etc. (2) the terms used in a science, etc. (3) applied science. (4) a method, process, etc. for handling a specific technical problem. (5) the system by which a society provides its members with those things needed or desired.

technique: (1) the method of procedure (with reference to practical or formal details), or way of using basic skills, in rendering an artistic work or carrying out a scientific or mechanical operation. (2) the degree of expertness. (3) any method or manner of accomplishing something.

組織の名称で比較

- Department of Engineering Science, Oxford University (UK)
- School of Technology, Cambridge University (UK)
- Faculty of Science, Engineering; University of Warwick (UK)
- Massachusetts Institute of Technology (USA)
- School of Engineering, Harvard University (USA)
- School of Engineering, Stanford University (USA)

... てんでばらばら

科学と技術の関係: 教科書の見解

- 担当者は上記見解にあまり同意しない
- 先に見た通り、英語でも Engineering, Engineering Science, Technology の区別は明瞭でない
- 自然と人間を対立させる意味がわからない

科学と工学: 担当者の見解

- 研究対象は共通、(付き詰めると) 物理現象 (化学・生物・地学なども)
- Science の目的: 自然現象の解明
- Engineering の目的: 物理法則の制約の範囲内で望ましい現象を起こす
- Science:
 - 人間を幸せにも不幸にもしない
 - 知的好奇心を満たすことが目的
- Engineering:
 - 人間を幸せ (?) にすることが目的
 - 工学は人間の問題から離れられない
研究の現場では Science と Engineering は入り混じっていて、研究者自身も無自覚

5.4.1 科学者の倫理

- 技術者の倫理は部分集合として科学者の倫理を含むものと思われる
- 科学者の倫理の説明は次回以降にまわす

5.5 技術と技能

森和夫：「技能」と「技術」に関する 93 人の定義
GinouGijutu/199602/19960215/19960215_index.html

にしたがって説明

5.5.1 製造現場から見た技能

- 一般の人の物づくりの考え方を応用した能力。
- 人間の習練、訓練に期待する技、能力等。
- 機械を動かす能力。
- 個人に内在する能力を専門的に高度化したものです。客観的に認識しろう程度には譲渡不可能。
- 人間自身が身につけていくもの。
- 技術を用いて物造りを行う能力。
- 技術を生かすための能力。
- プロセスを経て実際に技術を行って身につける能力。実践的なもの。
- 技術を扱う人の能力。人間を豊かにするもの。
- 技術を十分に発揮できる能力。
- 人間の能力。ものづくりを人間が対応する工程であり、人が関わることである。
- 製品 (モノ) をつくり出す “能力” で目に見えるもの (形) で表すことのできるもの。
- 人間の手足を使った能力。簡単にはできない。職人技、カン、コツが存在する。
- 技術を具現化させる能力。

58
・誰からも聞くことができる。また、誰にでも話せる。
・人と人との間で興味を持つ人のみに伝承されていくもの。もの造りに本当に興味がある人のみに有効なもの。
・科学、技術の中で人とのふれ合いで傳承される「わざ」。
・昔からの伝統を伝えていくもの。
・科学システムの開発したものを利用できるよう教育、伝えていくものを技能という。
・人間が生きていくための手段のひとつである。

5.5.2 製造現場から見た技術

・科学的な裏付けがあり、論理的に明確に説明がつくもの。習得できるもの。
・論理的、科学的な裏付けがあり、新しい製品を作り出す源。時代における技術者。
・科学的な裏付けに基づく生産に対する手段。習得には過去のデータ等が大切。それにより発展、発達が促される。
・科学的裏付けによる創作への過程をいう。
・近代的な科学的根拠に裏付けられた普遍的なエンジニアリング。
・ものを作り出す方法。
・物として確立するための手段・方法。
・術であり、方式・方法を考察する知恵であり、終着がない。

5.5.3 技能と技術の比較

・技能は:
 - 具体的、経験的、属人的
 - 技術を実現する手段
 - 伝承困難、流動性小

・技術は:
 - 抽象的、科学的、体系的
 - 伝承容易、流動性大

5.6 科学技術を担う人々

教科書の図式: 技術者 = 公衆 + 科学技術の経験・知識・能力
・科学者: 自然現象を感知し、その法則性を知ろうとする人々
・技術者: 技術を役立てることを職業とする人 (大辞林第2版)
・技能者: 技能を持つ人
・作業員: 技術、技能をもたず、技術者が設計し、技能者が行う業務において、指図を受けて作業する人
5.7 技術者の位置付け

- USA では技術者は「士官」
- 日本では:
 - 戦前は技術者は技能者の上位と見做された
 - 高度成長期には技術者と技能者を対等視する傾向
 - 労働組合は技術者、技能者、作業員の区別を拒否

5.8 技術者という職業の特徴

(典掲) 勢力 (編著), 科学技術の倫理学, 梓出版社, 2011
(引用にあたり若干表現を変えた)

- 機能やデザイン、安全性、コスト、納期、環境への配慮など、多様なファクターを総合的に考慮して、社会のニーズに合った技術や物を開発しなければならない
- 絶え間ない科学技術の変化に対応して、絶えず新たなノウハウを身につけているかなければならない
- 必ずしも特定の資格が必要であるわけではない、ありとあらゆる分野に極めて多くの数存在する
- 自分たちは開発した技術や製品を介して公衆と間接的に関わり合う
- 他の技術者や顧客、経営陣、上司、事務方、公衆など、様々な人々と様々な局面でコミュニケーションをとりながら仕事を進めていかなければならない

5.9 IEA: 技術系卒業生の資質と能力

- 国際エンジニアリング連盟 (International Engineering Alliance; IEA) 作成
- 標題は Graduate Attributes and Professional Competencies の直訳
- IEA に含まれるのは Washington Accord, Sydney Accord, Dublin Accord, Engineers Mobility Forum, Engineering Technologists, Mobility Forum (次回)
- 技術者を分類:
 - (Professional) Engineer ... Washington Accord Graduate
 - Engineering Technologist ... Sydney Accord Graduate
 - Engineering Technician ... Dublin Accord Graduate

5.9.1 Washington Accord Graduate

- (Professional) Engineer を規定
- 修了生において、公衆の健康・安全への考慮、文化的、社会的及び環境的な考慮を行い、複合的に絡み合う課題の解決や特定の要求に合ったシステム、構成要素又は工程を設計する特質を持つ
- 教育プログラムは 4〜5 年
- 日本は加盟済み
5.9.2 Sydney Accord Graduate

- Engineering Technologist を規定
- 修了生は、公衆の健康・安全への考慮、文化的、社会的及び環境的な考慮を行い、広範に特定された技術問題の解決や特定の要求に合ったシステム、構成要素又は工程を設計するのに貢献する特質を持つ。
- 教育プログラムは 3~4 年
- 日本は未加盟

5.9.3 Dublin Accord Graduate

- Engineering Technician を規定
- 修了生は、公衆の健康・安全への考慮、文化的、社会的及び環境的な考慮を行い、十分に特定された技術問題の解決や特定の要求に合ったシステム、構成要素又は工程を設計するのを補助する特質を持つ。
- 教育プログラムは 2~3 年
- 日本は未加盟

5.9.4 Engineer, Technologist, Technician の比較

- 法令遵守、倫理、生涯学習については同等の要求
- 取り扱う問題の水準が異なる
 - Professional Engineer: 複雑な問題 (complex problems)
 - Engineering Technologist: 大まかに定義された問題 (broadly-defined problems)
 - Engineering Technician: 明確に定義された問題 (well-defined problems)
- 要求される知識の水準が異なる
 - Professional Engineer: 一般性がある原理に関する進んだ知識 (advanced knowledge of the widely-applied principles)
 - Engineering Technologist: 一般性がある手続き等に関する知識 (knowledge embodied in widely accepted and applied procedures, processes, systems or methodologies)
 - Engineering Technician: 実務に関連した知識 (knowledge embodied in standardised practices)

用語等の正確な定義を知りたい者は

International Engineering Alliance Graduate Attributes and Professional Competencies Version 2 - 18 June 2009

を参照すること:

http://www.washingtonaccord.org/IEA-Grad-Attr-Prof-Competencies-v2.pdf
5.10 大学における実践的な技術者教育のあり方

- 平成22年6月2日付で公開

 http://www.mext.go.jp/b_menu/shingi/chousa
 /koutou/41/houkoku/__icsFiles
 /afieldfile/2010/06/07/1294583_1.pdf

(レイアウトの都合で改行を入れてある)

- 上記文書における技術者の定義は以下の通り:
 数学、自然科学の知識を用いて、公衆の健康・安全への考慮、文化的、社会的及び環境的な考慮を行い、
 人類のために設計、開発、イノベーション又は解決の活動を担う専門的職業人
5.11 課題

・教科書 [2], 事例 VIII(企業研究者のエネルギー事業分野選択) を読み, 65ページ③について考え, 見解を述べよ. まわりの人と議論してよいが, 自分の言葉で考えをまとめること.
6 技術者の資格

6.1 前回の課題 (教科書 [2], 事例 VIII(企業研究者のエネルギー事業分野選択) から

6.1.1 昼間主

この会社の強み

<table>
<thead>
<tr>
<th>项目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>水力発電</td>
<td>28</td>
</tr>
<tr>
<td>石炭発電</td>
<td>22</td>
</tr>
<tr>
<td>再生エネルギー</td>
<td>16</td>
</tr>
<tr>
<td>風力</td>
<td>15</td>
</tr>
<tr>
<td>研究能力・技術</td>
<td>15</td>
</tr>
<tr>
<td>メタンハイドレード</td>
<td>13</td>
</tr>
<tr>
<td>CSR への直接的貢献</td>
<td>11</td>
</tr>
<tr>
<td>未来指向</td>
<td>8</td>
</tr>
<tr>
<td>原子力発電がない</td>
<td>6</td>
</tr>
<tr>
<td>業態に関するビジョンが明確</td>
<td>3</td>
</tr>
<tr>
<td>多分野を手掛ける</td>
<td>2</td>
</tr>
<tr>
<td>業態自体が強み</td>
<td>2</td>
</tr>
<tr>
<td>環境問題を考慮</td>
<td>2</td>
</tr>
<tr>
<td>知的価値指針</td>
<td>2</td>
</tr>
<tr>
<td>原発以外に力を入れている</td>
<td>1</td>
</tr>
<tr>
<td>原発推進</td>
<td>1</td>
</tr>
<tr>
<td>プロジェクト型研究システム</td>
<td>1</td>
</tr>
<tr>
<td>海外展開する事業力</td>
<td>1</td>
</tr>
<tr>
<td>石油を排除</td>
<td>1</td>
</tr>
<tr>
<td>EPR の考慮</td>
<td>1</td>
</tr>
<tr>
<td>人材</td>
<td>1</td>
</tr>
<tr>
<td>客観性</td>
<td>1</td>
</tr>
</tbody>
</table>

この会社の弱点

<table>
<thead>
<tr>
<th>项目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>小さな事故を軽視</td>
<td>20</td>
</tr>
<tr>
<td>原子力発電がない</td>
<td>15</td>
</tr>
<tr>
<td>低いEPR</td>
<td>14</td>
</tr>
<tr>
<td>高い事故率</td>
<td>6</td>
</tr>
<tr>
<td>管理体質</td>
<td>4</td>
</tr>
<tr>
<td>事故対応が不十分</td>
<td>3</td>
</tr>
<tr>
<td>原子力発電を計画</td>
<td>2</td>
</tr>
<tr>
<td>環境負荷が高い</td>
<td>2</td>
</tr>
<tr>
<td>エネルギー生産のことばかり考えている</td>
<td>2</td>
</tr>
<tr>
<td>現在主流の発電方式を取り扱っていない</td>
<td>2</td>
</tr>
<tr>
<td>器用貧乏</td>
<td>2</td>
</tr>
<tr>
<td>エネルギー供給能力不足</td>
<td>2</td>
</tr>
<tr>
<td>前のめり</td>
<td>2</td>
</tr>
<tr>
<td>石炭に依存</td>
<td>1</td>
</tr>
<tr>
<td>利益追求が弱い</td>
<td>1</td>
</tr>
</tbody>
</table>
この会社が考えるべき前提

<table>
<thead>
<tr>
<th>项目</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>安全性</td>
<td>12</td>
</tr>
<tr>
<td>環境負荷</td>
<td>7</td>
</tr>
<tr>
<td>原子力の研究は必要</td>
<td>4</td>
</tr>
<tr>
<td>事故調査の重視</td>
<td>3</td>
</tr>
<tr>
<td>発電効率</td>
<td>3</td>
</tr>
<tr>
<td>プロジェクトメンバーの選定</td>
<td>3</td>
</tr>
<tr>
<td>日本の人口減少</td>
<td>2</td>
</tr>
<tr>
<td>日本の国力減少</td>
<td>2</td>
</tr>
<tr>
<td>メタンハイドレートの実用化</td>
<td>2</td>
</tr>
<tr>
<td>小規模事故の重要性</td>
<td>2</td>
</tr>
<tr>
<td>市民感覚の考慮</td>
<td>2</td>
</tr>
<tr>
<td>未来予測</td>
<td>2</td>
</tr>
<tr>
<td>供給能力</td>
<td>2</td>
</tr>
<tr>
<td>日本のエネルギー消費增大</td>
<td>1</td>
</tr>
<tr>
<td>地下資源の埋蔵量予測</td>
<td>1</td>
</tr>
<tr>
<td>大規模事故を想定すべき</td>
<td>1</td>
</tr>
<tr>
<td>再生エネルギーの重視</td>
<td>1</td>
</tr>
<tr>
<td>風力発電の普及</td>
<td>1</td>
</tr>
<tr>
<td>原子力は使わない</td>
<td>1</td>
</tr>
<tr>
<td>選択と集中</td>
<td>1</td>
</tr>
<tr>
<td>経済性</td>
<td>1</td>
</tr>
<tr>
<td>効率と環境負荷のバランス</td>
<td>1</td>
</tr>
<tr>
<td>多角化</td>
<td>1</td>
</tr>
<tr>
<td>新発電方式</td>
<td>1</td>
</tr>
</tbody>
</table>

6.1.2 夜間主

この会社の強み

<table>
<thead>
<tr>
<th>项目</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>再生エネルギー</td>
<td>4</td>
</tr>
<tr>
<td>水力発電</td>
<td>3</td>
</tr>
<tr>
<td>研究能力・技術</td>
<td>3</td>
</tr>
<tr>
<td>CSR への直接的貢献</td>
<td>3</td>
</tr>
<tr>
<td>石炭発電</td>
<td>2</td>
</tr>
<tr>
<td>未来指向</td>
<td>2</td>
</tr>
<tr>
<td>業種自体が強み</td>
<td>1</td>
</tr>
<tr>
<td>メタンハイドレート</td>
<td>1</td>
</tr>
<tr>
<td>原子力発電がない</td>
<td>1</td>
</tr>
<tr>
<td>風力</td>
<td>1</td>
</tr>
<tr>
<td>プロジェクト型研究システム</td>
<td>1</td>
</tr>
</tbody>
</table>

この会社の弱点
原子力発電がない 2
小さな事故を軽視 6
高い事故率 1
低い EPR 2
管理体質 3
利益追求が弱い 1
前のめり 1

この会社を考えるべき前提

事業の持続可能性 1
研究開発費と収益のバランス 1
安全性 1
原子力の研究は必要 1

6.1.3 コメント欄から

- 原発事故で、(福島のような) 沸騰型でなく加圧型であれば被害が少なかったという話があるが本当か？

 - 加圧型の方が事故のリスクが低い
 - 冷却できなくなれば爆走するのはどちらも同じ

- 現場では作業員と技術者の線引きは明確か？
 ⇒ ふつうは明確

- 水力発電での死者の理由は？

 - AFP BBNews の 『副水利相、『中国のダムは時限爆弾』 - 中国』という記事 (2007 年 04 月 20 日配信) という記事 (http://www.afpbb.com/article/1527893) を掲載する

 - 1975 年のダム決壊で 26,000 人が死亡

 - 3 万基のダムに構造欠陥

副水利相、『中国のダムは時限爆弾』 - 中国 2007 年 04 月 20 日 17:03 発信地:中国

北京/中国 20 日 AFP】新華社通信によると、祷勇 (Jiao Yong) 副水利相は 20 日、中国西北部の甘肅 (Gansu) 省で前日発生したダム決壊事故を受け、「中国各地の数千機のダムの決壊は、時間の問題だ」と語った。

■「欠陥を抱えたダムの安全対策を行う」と宣言

19 日のダム決壊事故では、近隣地区一帯が仮住し、高速道路が崩壊した。また、近郊の 4 村の住民 1700 人が避難を余儀なくされた。

新華社は、「欠陥を抱えたダムは『時限爆弾』のようなものだ。ダム下流地域の住民の生活や資産は深刻な脅威にさらされている」との副水利相のコメントを掲載した。

祷副水利相は、ダム安全・補強対策として、大小問わず中国全土のダムの修理工事を行うと宣言した。期間は 3 年をめどとしているが、副水利相は「非常に大きな任務となる」と述べている。
新華社によると、中国全土には8万5000基以上のダムがあるが、そのうち3万基（大規模ダム200基、中規模ダム1600基を含む）に深刻な構造欠陥があるとみられている。

河川災害に「技術力」を欠くと、中国の河川は、過去にも度々氾濫し水害を招いてきた。1975年8月に河南（Henan）省中部を襲った豪雨では、ダム62基が決壊、破壊されるなどした。

公式統計によると、この災害で、少なくとも2万6000人が死亡、1000万人が深刻な被害を受けたが、この数字は、数年間、隠蔽されてきたものだった。専門家は、決壊事故のいくつかは技術的な欠陥が原因だとしている。

一方、中国政府が治水対策を目的に、「世界最大の発電プロジェクト」として揚子江中流に建設した三峡ダムでは、ひび割れが見つかり、中国のダム建設技術への懸念が持ち上がっており、しかし、中国政府は懸念を否定、ひび割れに問題はないとし、補修工事を行っていると説明した。

写真は20日、前日のダム決壊で冠水した高台（Gaotai）県の村落。（c）AFP

ダムのために立ち退きした町はあるか
⇒ たとえば、「ダムに沈んだ村写真展」などといったページがある
http://www.westsho.jp/syoukawa/db/feeling/index.html
検索サイトで探せばいろいろな事例が見つかる

担当者（半場）はどのように情報収集をしているか

- テレビは一切見ない（1987年から）
- 新聞も読まない（1996年から）
- 情報源はインターネットの複数のポータルサイト、ロイター、AP、AFPなどの海外通信社、BBC、Voice of America、その他海外ニュースサイトなど

有能な技術者になるには何が必要か

- 担当者（半場）の意見では、
 * 主観や希望的観測を排除してデータを見る能力
 * バランス感覚
- 考え方は人それぞれだと思う

担当者（半場）のEngineeringとScienceの比率は?
⇒ 論文の内容で見ると1:1くらい
6.2 専門職

Concise Oxford English Dictionary, 11/e

professional a person having impressive competence in a particular activity (特定分野において高い能力を持つ人)

expert a person who is very knowledgeable about or skillful in a particular area (特定分野について良く知っている、あるいは熟練した人)

英語としての意味はあまり変わらないように見えるが、専門職 (professional) と専門家 (expert) は異なる位置付け

- 専門職: 高度な専門知識や技能が求められる特定の職種（大辞林第2版）
- 「高度の専門知識」は労働基準法第14条第1号及び第2号の規定に基づき厚生労働大臣が定める「高度の専門的知識等」の基準で定義: たとえば、博士課程修了者、修士課程修了者で実務経験2年以上、各種国家資格を持つ者など
- 西欧流の「専門職」はより狭義、伝統的には医師、法律家、聖職者
- 「専門職」は「社会的に尊重される職業」
- 「技術者は専門職か」が問題: UK と USA では専門職
- UK では The Engineering Council (ECUK) による自治（詳細は後述）
- USA では州法で Professional Engineer (PE) を規程（詳細は後述）、行政による規制（ただし技術者 = PE ではない）
- 日本では技術者は専門職として社会的に認知されているわけではないが、技術者は国家資格

6.3 UK

6.3.1 Engineering Council (http://www.engc.org.uk/)

The Engineering Council is the UK regulatory body for the engineering profession. We hold the national registers of 235,000 Engineering Technicians (EngTech), Information and Communications Technology Technicians (ICTTech), Incorporated Engineers (IEng) and Chartered Engineers (CEng).

In addition, the Engineering Council sets and maintains the internationally recognised standards of professional competence and ethics that govern the award and retention of these titles. This ensures that employers, government and wider society - both in the UK and overseas - can have confidence in the knowledge, experience and commitment of registrants.

6.3.2 歴史的な流れ

1. 同業者がクラブ、アソシエーションなどを結成し、勉強会等を開始
2. royal charter を求めて法人化を図る

68
6.4 USA

以下の記述は 日本プロフェッショナルエンジニア協会のページ (http://www.jspe.org/) による

- PE 資格: 1907 年に始まった制度, 公共に奉仕するためにエンジニアの能力の客観的評価をめざす
- 設立の経緯はワイオミング州における土地所有に関する地図, 図面の作成によるトラブル
- すべてのエンジニアと土地測量技師の登録を義務づける法案が出され, 州法として成立
- 全州に広がる, 試験方法は各州ほぼ同じ
- National Council of Examiners for Engineering and Land Surveying が試験, 申請条件, 審査, 登録は
州によって異なる
- 大半の市・州・政府機関では, 責任の伴う技術業務の実施にあたっては担当者に PE ライセンスを要求;
- 関連団体は National Society of Professional Engineers
 http://www.nspe.org/

PE licensure is the engineering profession’s highest standard of competence, a symbol of achievement and assurance of quality. NSPE provides its members, whether already licensed or soon-to-be licensed, with the information and resources they need to earn and maintain the respected PE seal.

- 日本の技術者にも PE 資格を取得する動き
- 特定の企業内で仕事を続ける場合は PE 資格は必要ないことも
6.5 日本

6.5.1 日本技術士会 http://www.engineer.or.jp/

1951 日本技術士会設立
1957 技術士法（法 124 号）公布
1958 第 1 回技術士試験実施
1959 社団法人日本技術士会発足
1983 技術士法全面改正 (法 25 号)
1984 社団法人日本技術士会が指定試験・登録機関となる
1985 第 1 回技術士第一次試験実施
2000 技術士法一部改正
2000 APEC エンジニア (後述) 申請受付開始
2008 EMF 国際エンジニア (後述) 申請受付開始
2011 公益社団法人へ移行

6.5.2 技術士

- 伝統的には技術コンサルタント向けの資格、一般の技術者にはあまり関係はなかった
- 名称独占資格であり、業務独占資格ではない
- 2000 年に技術士の英語名を Professional Engineer に変更、APEC エンジニア (後述) に対応
 - 同等以上の外国の資格者に技術士の資格を認める
 - 大学などの教育機関との連携
 - 技術士に継続学習の義務を課す
- 先行きは不透明

6.5.3 JABEE http://www.jabee.org/

- JABEE とは、技術系学協会と密接に連携しながら技術者教育プログラムの 審査・認定を行う非政府団体
- 日本技術者教育認定制度とは、大学など高職教育機関で実施されている技術者教育プログラムが、社会の要求水準を見たしているかどうかを外部機関が公平に評価し、要求水準を見たしている教育プログラムを認定する専門認定制度
- Washington Accord 加盟国間で教育の同等性を保障

6.5.4 JABEE 認定プログラム修了者

- 自動的に修習技術者となる
- 登録により技術士補の資格を得る
- 技術士第二次試験受験に必要な経験を積めば、技術士第二次試験を受験することができる
・JABEE プログラム修了生は修了プログラムの部門にかかわらず第二次試験はすべての技術部門を受験することができる
(http://www.jabee.org/OpenHomePage/gijutsushi.htm#m1)

・技術士第二次試験合格後、技術士登録をすることで、技術士資格を得る

6.5.5 修習技術者が技術士となるには

・方法1：技術士補に登録、補助する技術士の下で4年（総合技術管理部門は7年）を超える期間の実務経験

・方法2：優れた技術指導者の下で4年（総合技術管理部門は7年）を超える期間の実務経験

・方法3：7年（総合技術管理部門は10年）を超える期間独自の実務経験

6.5.6 技術士補の登録

http://www.engineer.or.jp/に説明

・必要書類：技術士補登録申請書、登記されていないことの証明書、身分証明書又は身元証明書（日本国籍以外者は登録原票記載事項証明書）、補助しようとする技術士の証明書、文部科学大臣が指定した大学その他の教育機関の教育課程を修了したことを証する書類、登録証発送用宛名ラベル、登録免許税15,000円、登録手数料6,500円

6.5.7 技術士の登録

http://www.engineer.or.jp/に説明

・必要書類：技術士登録申請書、登記されていないことの証明書、身分証明書又は身元証明書（日本国籍以外者は登録原票記載事項証明書）、術士事務所に関する証明書、登録証発送用宛名ラベル、登録免許税30,000円、登録手数料6,500円

・USA の Professional Engineer の資格が取得できるわけではないので注意

技術士補に関する注意：技術士法より

第二条 この法律において「技術士」とは、第三十二条第一項の登録を受け、技術士の名称を用いて、科学技術（人文科学のみに係るものを除く。以下同じ。）に関する高等の専門的応用能力を必要とする事項についての計画、研究、設計、分析、試験、評価又はこれらに関する指導の業務（他の法律においてその業務を行うことが制限されている業務を除く。）を行う者をいう。

第二条の第二項の登録を受け、技術士補の名称を用いて、事前に規定する業務について技術士を補助する者をいう。

第四十七条 技術士補は、第二条第一項に規定する業務について技術士を補助する場合を除くほか、技術士補の名称を表示して当該業務を行つてはならない。
6.5.8 まとめ：USA と日本の比較

- USA: Professional Engineer
 - 仕事をする上で必要なことが多い
 - キャリア設計で有利
- 日本：技術士
 - 伝統的にはコンサルタント業以外では不要、冷遇された資格
 - 名称独占資格から業務独占資格への脱皮をはかっているが、現状では進んでいない
 - 日本人が USA の Professional Engineer を取りることがあるということは...

6.5.9 JABEE に未来はあるのか?

- 企業の認知が進まず、苦戦
- 大学にも JABEE 回避の動き
- 先行きは不透明
- 電気電子工学科は昨年度は受審

6.6 国際間相互認証

(以下の記述は http://www.washingtonaccord.org/による)

Washington Accord (Engineering degree programs を規定)

The Washington Accord, signed in 1989, is an international agreement among bodies responsible for accrediting engineering degree programs. It recognizes the substantial equivalency of programs accredited by those bodies and recommends that graduates of programs accredited by any of the signatory bodies be recognized by the other bodies as having met the academic requirements for entry to the practice of engineering.

加盟国等 オーストラリア, カナダ, 台湾, 香港, アイルランド, 日本, 韓国, マレーシア, ニュージーランド, シンガポール, 南アフリカ共和国, 英国, アメリカ合衆国
Sydney Accord (Engineering Technologists を規定)

Flowing from the Washington Accord, a similar Agreement was developed for Engineering Technologists or Incorporated Engineers, called the Sydney Accord (SA), which was signed in June 2001.

加盟国等 オーストラリア, カナダ, 香港, アイルランド, ニュージーランド, シンガポール, 南アフリカ共和国, 英国, アメリカ合衆国

Dublin Accord (Engineering Technician を規定)

The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

In May 2002 the national engineering organisations of the United Kingdom, Republic of Ireland, South Africa and Canada signed an agreement mutually recognising the qualifications which underpin the granting of Engineering Technician titles in the four countries.

Since then, two further economies have attained provisional membership, and are working towards signatory status. They are New Zealand and the United States.

加盟国等 カナダ, アイルランド, 南アフリカ共和国, 英国

APEC Engineer

There is an agreement in place between a number of APEC countries for the purposes of recognising “substantial equivalence” of professional competence in engineering. APEC countries can apply to become members of the agreement by demonstrating that they have in place systems which allow the competence of engineers to be assessed to the agreed international standard set by the APEC Engineer agreement.

加盟国等 オーストラリア, カナダ, 台湾, インドネシア, 日本, 韓国, マレーシア, ニュージーランド, フィリピン, ロシア, シンガポール, アメリカ合衆国

Engineers Mobility Forum

The Engineers Mobility Forum agreement is a multi-national agreement between engineering organisations in the member jurisdictions which creates the framework for the establishment of an international standard of competence for professional engineering, and then empowers each member organization to establish a section of the International Professional Engineers Register.

The standard of competence applied is the same as for the APEC Engineer agreement. Most of the APEC agreement members are also members of the EMF agreement, but the latter is truly global so that countries such as the United Kingdom, Ireland and South Africa have become members of EMF even though they cannot join the APEC agreement.

加盟国等 オーストラリア, カナダ, 台湾, 香港, インド, アイルランド, 日本, 韓国, マレーシア, ニュージーランド, シンガポール, 南アフリカ共和国, スリランカ, 英国, アメリカ合衆国
Engineering Technologist Mobility Forum

As a result of an agreement by the Sydney Accord signatories to explore mutual recognition for experienced engineering technologists, representatives of the engineering profession in each of the signatories to the Sydney Accord met in Sydney in November 1999, and Thornybush South Africa in June 2001. The participants in these meetings, having exchanged information on, and made a preliminary assessment of, their respective processes, policies and procedures for granting recognition to experienced engineering technologists, concluded that these were sufficiently comparable to justify further examination. They agreed on the broad principles of a framework which might enable progress towards removing artificial barriers to the free movement and practice of engineering technologists amongst their countries. An agreement was reached on the principles and outline processes by which the substantial equivalence in competence of experienced engineering technologists could be established. This Agreement is known as the Engineering Technologist Mobility Forum Memorandum of Understanding (ETMF MOU)

加盟国等 カナダ, 香港, アイルランド, ニュージーランド, 南アフリカ共和国, 英国

6.7 科学倫理

- 「技術士」は国家資格（いまだにマイナー）
 倫理は「専門職」の要件であると説明されている
- 担当者の知る限りでは、科学者全般に相当する国資格はなく、「専門職」という名称へのこだわりもなさそう
- 科学者の倫理は問題となることが多かった
- 「科学倫理」は技術者の倫理の一部であるという考え方もある
- 医学系の分野では生命倫理は必須 (第 2 回で講義)

以下の記述はおもに以下に準拠:
加藤 (編集代表), 応用倫理学事典, 丸善, 2008

6.7.1 科学倫理で問題になること

- 研究倫理
 - 研究における不正
 - その研究を「やってよいものかどうか」という問題
 (遺伝子操作など)
- 科学者の社会的責任
 - 研究の「成果」にどう向き合うか (原子爆弾)
- 19 世紀までの科学は知的好奇心の充足が目的, 倫理はそれほど問題にならず
- 20 世紀の原子爆弾の開発以降の「巨大科学」の流れ, 科学の性格が技術に近付く
 ⇒ 倫理がより問題に
6.7.2 研究における不正: 捏造

- 捏造とはデータがまったく存在しないところであたかもデータが存在するかのように装うこと
 - 国内の旧石器時代の遺跡: 自分で埋めたゴッドハンド
 - 韓国のES細胞捏造: ノーベル賞狙いで実験結果をでっち上げ
- グレーゾーンなし、あれば即不正

6.7.3 研究における不正: 改竄

- 改竄とは本来その研究からは導き出せないような結論を導き出そうとして、実際のプロセス、データ、分析結果などに意図的に手を加えたり除外したりすること
 - 正しい結果が出ないように実験機器をいじる
 - 実測値と異なる数値を記録
 - 不都合なデータを選んで消す
- グレーゾーンあり: 悪意のない間違いは改竄とはいいえない
- データを取り直すことの妥当性は状況による; 測定法に明らかな誤りを見つけたときはOKだが...

6.7.4 捏造と改竄に関するコメント

- 科学研究は先人の知見の積み重ね
- だれもが容易に実験等の追試をおこなうわけにはいかない ⇒ 基本形には他人が出したデータは信用
- 捏造と改竄は科学研究の根本を脅かす

6.7.5 剽窃、盗用

- 他人の研究成果を自分のものと称すること
 - 他人的論文を丸ごと写して著者名だけ自分の名前に変える,
 - 他論文のデータを自分が盗んだデータであるかのように装う
 - 実際に実験をこなした者を論文の著者リストに載せない
 - 貢献が低い者が第一貢献者であるかのように装う
- グレーゾーンあり, 見解の相異で紛争になることも
- 本学科の卒業研究でも剽竄と取られかねない行為が見られることがある, 注意
- 引用 (出典を明示) は剽竄とはいえないが著作権上の制限を受ける
- 学術論文では著者 (貢献者) が複数いることがふつう
- 研究業績に関する競争が存在する関係で、著者をどういう順に記載するかで紛争が発生することがある
- 研究分野によって異なる慣行がある
- 第一著者(著者リストの最初の者)あるいはCorresponding Author と呼ばれる者の貢献が高いと見做される傾向
6.7.6 捏造・改竄・剽窃・盗用のまとめ

- 捏造、改竄、剽竊は科学研究における最悪の不正行為
- 大学等では懲戒免職等の厳しい処分が下されることが普通
- 裁判所の見解が異なることがあり、研究上の不正で処分されたものと教員が大学等を提訴し勝訴することもある

沖縄タイムズ2010年8月26日09時19分 http://www.okinawatimes.co.jp/article/2010-08-26_9587/

琉球大学大学院・医学研究科の4.0代の男性教授が学術誌に発表した論文に不正行為があったとする問題で、琉球大学は25日、学内で記者会見し、同教授を24日付で懲戒解雇にしたと発表した。

琉大へ赴任後に発表した50編のうち38編で、過去の実験結果を毎回の実験結果のように装い何度も使い回したり、ほかの論文で使ったデータの出典を明示せずに別の論文に転用したりしていた。38編のうち11編は大学院生の学位論文で、学位が取り消される可能性がある。

佐藤良也・医学研究科長は会見で「医学研究の信頼を著しく失墜させる行為で、多数の大学院生の学位が取り消される可能性を考えて、社会的にも大きな問題。深刻な教育指導上の問題を引き起こした点で、責任は極めて重いと判断した」と述べた。

同教授は実験結果の使い回しについて「データを偽造したと言われても仕方のない行為」として、不正を認めて謝罪。出典を明らかにしないデータの転用については「論文作成のルールにうかがえた」との認識を示したという。

平啓介・研究担当理事は同教授の研究について「文部科学研究費の研究費などの公的資金や、多くの学術支援団体の資金で実施されている」として「交付機関の判断になるが、返還を求められることが当然あると考えている」との考えを示した。

琉大側は、論文を掲載した国内外の計17の学術誌に調査結果を報告。同医学研究科の学位は、学術誌に掲載された論文で審査されるため、学術誌に論文を取引消せば、学位も取り消されるという。

不正とのかかわりについて当時の学生は「教授から指示され、特に関酸を感じずにやった」と話していると言い、佐藤研究科長は「（学位が取り消されれば）何らかの形で復活させる手だてを研究科全体で考えたい」としている。

琉球大学では今年3月、総務部の男性職員が業者に偽品代を架空請求したとして、停職1汚 cosplay処分となったほか、法文学部の男性教授が大学院生と不適切な関係を持ったとして、論旨解雇処分となっている。

沖縄タイムズ2010年12月7日09時47分 http://www.okinawatimes.co.jp/article/2010-12-07_12644/

琉球大学大学院医学研究科の元男性教授＝懲戒解雇＝が在任中に指導した大学院生の学位論文で実験データの不正な使い回しをしていた問題で、4人の学位（博士号）が取り消される見通しであることが5日、分かった。使い回しが発覚した11編の学位論文のうち、4編は学術誌が不適切と認めて取り消すことを決めた。別の論文2編についても、学術誌がそれぞれ取り消しに向けた手続きを進めており、2人の学位も取り消しにされる可能性が高い。年間4月1日に開始される医学研究科教授会で正式に決定する見通し。

琉大医学研究科の調査委員会（委員長・佐藤良也医学研究科長）によると、学位の授与は、学術誌に掲載された論文で審査することが条件となっており、学術誌が論文を取引消せば、自動的に学位が失われる。
データの使い回しが確認された元教授の論文は３８編で、うち１１編は同教授が責任著者として指導した大学院生の学位論文だった。
学術誌が論文の取り消しを決めた４編と、取り消しに向けて手続きを進めていている２編のほか、２編は著者が訂正すれば論文は取り消さず、残りの３編は既に取り消さないことを決めたという。
また１１編の学位論文のうち１編は、岩政輝男学長が共著者となっていたことが分かった。学術誌が論文を取り消さないことを決めた３編中の１編で、調査委員会は６日、「オリジナルのデータが使われており、不正な論文とは認められない」（佐藤委員長）として、学位を取り消さないことを決めた。関係者によると、学位論文以外で岩政学長の共著が一編ある。
同調査委員会は、学術誌が論文を取り消さなかった場合でも、不正の内容と度合いを議論した上で、学位を取り消す可能性はあるとしている。
元教授のデータの使い回しは、今年１月から３月にかけて元教授の論文２編を掲載した米学術誌の指摘で発覚。大学側の調査に元教授が事実を認めた。琉大医学研究科は４月に調査委員会を設置し、元教授が琉大への赴任後に発表した全５０編の論文を調査。３８編で使い回しが確認できたとして、８月に元教授を懲戒解雇した。
論文を指導された院生らは「（元教授から）そのようにしてよいと指導され、（データの使い回し）に疑いを持たなかった」と話したという。
結論に影響なし　元教授が反論　元教授は本紙の取材に「（データの使い回し）論文の科学的な結論に影響はなく、理解を示した一部の学術誌は論文を取り消していない。訂正すれば取り消さないとしている学術誌もあり、大学院生を含めた教室員が再実験をして、学位復活のための努力をしている」などと話した。
琉大教授の懲戒撤回　論文データ流用問題琉球大学（岩政輝男学長）大学院医学研究科の男性教授は論文論文中にデータの流用があり、同教授が２０１０年８月末に懲戒解雇処分にいたしていた件で、大学側が教授の解雇処分を撤回し、６月末後復職することが4日、複数の学内関係者らの話で分かった。男性教授は１０年１０月に那覇地裁に教授としての地位保全を求める仮処分を申し立て、地裁の和解案を双方が大筋で受け入れた。
琉大の懲戒処分は重いものから順に（1）懲戒解雇（2）懲戒解雇（3）降格（4）停職（5）減給（6）戒告一となっている。１０年１２月に裁員所が勧告した和解案に沿い、男性教授の処分は１番重い懲戒解雇から３ランク下がり、停職１０ヶ月になった。1月に琉大の教育研究	評議会で和解受け入れが岩政学長に一任されることが決議されていた。
和解について琉大は「８日に開く臨時の評議会で学内向けに報告してから発表すると」とコメントした。論文問題の調査委員長である医学研究科の佐藤邦也研究科長はコメントしなかった。
和解した男性教授は「論文の結論・研究の結果は変わらないという主張が認められたと思う。裁判所に感謝している」と話した。
同問是米学術誌の指導を受け10年３月に発覚。同４月に医学研究科が調査委員会を立ち上げ、調査を進めた。同8月に男性教授が懲戒解雇処分。同１２月には論文の筆頭著者である元学生４人の学位が１年１月に取り消される見込みだと調査委が発表した。

6.7.7 科学者の社会的責任

- 研究の成果に対する責任
「科学をどう使うかは使う人間の問題」という素朴な主張は受け入れられにくくなっている

研究すること自体に対する責任

「新生命の創出」や毒物の開発などをしてよいか

反社会的組織等から資金提供を受けて研究をしてよいか

説明責任については技術者の倫理と同様、この講義では教科書 11 章

倫理的に問題のある研究を抑制すべきか否かについては国際的な競争との関係もあり見解の一致なし

資金提供については明確な合意なし、グレーゾーンが広い

林ほか、技術者の倫理、コロナ社、2006：研究倫理のガイドライン

1. 倫理に反する内容の研究を行わないこと
2. 反倫理的な資金提供による研究を行わないこと
3. 研究過程において不正行為を行わないこと
4. 研究結果は責任を持って、わかりやすく、偽らず発表すること
5. ほかの研究者の先取権を尊重すること
6. ほかの研究者の研究について公正に評価すること
7. 可能な限り研究内容を透明にすること

上記は広く合意されている内容ばかりではないので注意

6.8 ピア・レビュー

6.8.1 ピア・レビューとは

・ 学術論文の質を保つしくみ

・ 論文の著者と同等の能力を持つ(と思われる)複数の専門家による内容の審査(査読という)

・ 審査で掲載可能と判定された論文のみが学術雑誌に掲載される

6.8.2 ピア・レビューの流れ

1. 著者が雑誌に論文を学術雑誌に投稿(電子メール、WWW 等)
2. 学術雑誌の編集長が査読者(著者の分野と近い専門家)を複数選定し、査読依頼
3. 査読者は論文の新規性、有用性、客観性(内容の正しさ)などの観点からその論文が学術雑誌に掲載するに足る内容を持つか否かを判定し、a) そのまま掲載可、b) 輕微な修正ののちに掲載可、c) 重大な問題があるので修正を要求、d) 掲載の可否は査読を全て判断、e) 重大な問題があり、全面的な書き直しが必要、f) 致命的な問題があり掲載不能などといった判定をする(学術雑誌によって判定法は異なる); 問題点を具体的に指摘することは査読者の義務

78
4. 編集者は査読者の判定を参考に掲載の可否を判定し掲載可/著者照会（修正などを要求し著者の返事待ち）/掲載不可などと判定

5. 著者は:

- 掲載可: よろこぶ；掲載稿を準備
- 著者照会: 修正稿を準備、反論もありうる
- 掲載不可: 嘆き悲しむ；編集者に抗議することも

6. 掲載決定後は出版社の仕事、事務的進行

ピア・レビューに関するコメント

- ピア・レビューは学術論文の品質を一定以上に保つための「必要惡」
- 手間がかかり、査読者によるアイデア盗用、査読者の見当外れなコメント、編集者の怠惰などといったトラブルも多い
- ピア・レビューなしに学術論文を出版する試みも過去に幾度となくなされが、頓挫
6.9 課題

教科書 [2], 事例 I(JCO 事故) を読み, 22 ページ② について考え, 見解を述べよ. まわりの人と議論してよいが, 自分の言葉で考えをまとめること.
7 倫理実行の手法

7.1 前回の課題から (JCO)

7.1.1 昼間主

- 同僚に相談 → 問題点と解決策をまとめて上司等に報告 → うまくいかなければ再検討
- できる範囲で工程を安全側に改良しつつ法改正を待つ
- すぐに工程を変更するのは控えるべき (更に危険な可能性がある)
- リスクの大きさに応じてやるべきことに優先順位を付けるべき
- 安全重視で
- 会社から国に相談してもらう
- 会社に法改正の必要性を訴える
- 国に相談
- 会社を辞める
- 労働組合に訴えてストライキを起こす (?)
- 創造を起こす (?)
- 創造所に法改正の必要性を訴える (?)
- 署名を集めて法改正を求める (?)
- 現場の作業員としては操業を続けるしかない (?)
- 安全性が確保されるまでラインを止めてもらう (?)
- その仕事を止める (?)
- 緊急的に作業工程を変更する (?)
- 付近の住民に危険情報を伝える (?)
- 相談窓口をネットなどで調べる (?)
- マスコミや世論に訴える (?)
- 法改正を国に要求 (?)
- 弁護士などに相談 (?)
- JCO 事故そのものについて論じた回答がかなりあったが、それはこの課題の趣旨ではない (減点はしないが)
7.1.2 夜間主

- まず上司・同僚に相談
- 上司に報告して工程を改良する
- 作業員に負担を発見する能力があるかどうか疑問, 専門家に相談すべき
- 社内の手を知く上で, 効果がなければ進める (辞職)
- 現場で工程を改良する
- 工程を改善しつつ国に働きかける
- インターネットを使って法改正を呼び掛ける (?)
- 上司に報告 → 会社経由での法改正を期待 → うまくいかない場合は法律事務所に相談 (?) → 労働組合が国を提訴 (?)
- JCO 事故そのものについて論じた回答がいくつかあったが, それはこの課題の趣旨ではない (誠点はしないが)

7.1.3 担当者コメント

中村, 技術者の立場からの技術者倫理教育への提言,
電気学会誌, Vol. 131, No. 6, pp. 456-348, 2011 からの引用

現役の技術者に対する専門職倫理教育が定着していて, 工学生にもそれに沿った倫理教育が行われるのか, あるべき姿ではないだろうか. JABEE(日本技術者教育認定機構)の要請などで, 工学生に対する教育が先行してしまった日本では, かなりの混乱が見受けられる. そこで, 工学倫理教育が先行したために, 工学倫理を学んだ新入社員が, とりたてて技術者倫理を学ぶ機会がなかった技術者の集団に加わる状況が生じている. 最近の現場の状況は把握していないが, 不必要な混乱や誤解が起きていないことを願う. 工学倫理の教科書によっては, あり得ないことではない.

- 今回の回答では, 「技術者の倫理」という科目の負の側面に相当するものが目立った
- 不確実な情報をマスコミに流して社会不安を煽ることは倫理的には大きな誤りであるが, 勤怠している者が多いように見受けられる
- 情報発信に伴う責任について理解していないのではないか
- 昨年, ホテルでアルバイトをしていた学生が顧客の個人情報をツイッターに漏れ流す事件が発生したが, それと同種の危うさを感じる
- 技術者の倫理の目的のひとつは公衆の安全を守ることであるが, 目的を達成するためにのコストは低ければ低いほどよい. 問題が解決されるのであれば, 騒ぎは小さい (あるいは起こらない) 方が良い
- 内部告発の回で詳しく述べるが, 企業の問題の解決のためには, まず社内的にあらゆる手段を尽くすのが原則
- 社内外の手段を尽くす際には, 企業の命令系統を可能な限り乱さないのが原則; まず直属の上司に相談し, 駄目な場合は順次上司に接触・連絡を試み, それでも駄目なら企業内の相談窓口, それでも駄目なら社外, というふうに, 手順がある

82
・チャレンジャー号の事故では，Roger Boisjoly はきちんととした手順を踏んでいる

・社外に相談するなら最初は監査席へ，次に専門家

・マスコミやネットへの公表は最後の手段

・緊急性が高い場合や証拠隠蔽等の可能性がある場合にはいくつかの手順を飛ばすことはありうるが，これはあくまで非常手段

・マスコミや世論は理性的とは限らない；合理的な解決を阻むこともありうる

7.1.4 コメント欄から

・卒業研究における剽窃に罰則はあるか？
 ⇒ 程度によるが，学科共通の採点表に「技術者の倫理に則った行動」という欄があり (合否判定)，否の場合は卒業研究は不可

・情報収集のために掲示板を見るか？
 ⇒ 読むだけなら

・ある団体から資金提供を受けてよいかどうかを判定する機関はあるのか？
 ⇒ 国内にはたぶんない，海外の状況は不明。

・JABEE 認定を受けているということは，この学科の教育は他大学に劣ってはいないのか
 ⇒ 比較対象ももとるが，国立大学法人の中では極めて易しい方に属する：JABEE は教育システムが全体として機能していることを保証するものであり，講義のレベルを保証するものではない

・メタンハイドレートの実用化にどのくらいかかるか？
 ⇒ 採掘試験はすでに始まっている (石油天然ガス・金属鉱物資源機構，http://www.jogmec.go.jp/) が，商業化が成功するかどうかはまだ不明，日本海側の資源を探掘しないことに批判もある

・日本で USA の PE 資格を取るのはどうしたらよいか，日本で効力はあるか
 ⇒ 日本 PE・FE 試験協議会のページ http://www.jpec2002.org/ に情報がある。検索サイトで「PE を取ろう」などといった語句で検索すると他のページも見付かる，USA で仕事をするための資格であり，日本から出ないのであればあまり関係ないが，USA に転動になった場合は有利になることもありうる。

・テレビ関連でいくつか質問・コメントがあったが，講義と関係ないのでコメントしない。
7.2 倫理問題の分析

- 倫理問題を解決するための万能アルゴリズムはない
- 問題解決のためにはまず分析が必要
- 見掛け上の倫理問題と思われた問題が、実際には倫理問題ではないこともある

7.2.1 争点の分類

- 事実関係の争点
- 概念上の争点
- 適用上の争点

7.2.2 争点 事実関係の争点

- 起きている事実そのものに関する争い、
 - 科学技術的な争点
 - 法的な争点
 - 倫理的な争点

教科書は以下のように主張

- 科学技術的争点は科学技術の方法によって解決すべき
- 法的な争点は法的に解消すべき
- これらに倫理を持ち出すのは間違い
- 事実関係の争点は事実が明らかになっただけで解消することが多い

コメント

- 科学技術的な問題には、事実を明らかにすることが困難なものも多い
- 訴訟では、事実関係について原告と被告が争うことが普通、判決が事実に基づいているという保証はない
- 科学技術的な問題、法的な問題に関する議論を倫理問題とすりかえるのは詐弁の常套手段
- どのような観点で論じているかをつねに明確にしておかないと議論は迷走する

7.2.3 争点 2: 概念上の争点

- どう解釈するかで見解が分かれるような場合
 例: 年始に取引先からカレンダーが送られてきた、これは賄賂だろうか?
- この種の争点には明確な解答はない
- 慣習や人間関係との兼ね合いもあり判断が難しい
- カレンダーの例に限定すれば、最近はいったい贈答品は避けられる傾向
7.2.4 争点3: 適用上の争点

- 解釈の余地のある問題
- たとえば、「情報公開すべき」までの合意は成立しているものとして、
 - 何を
 - どこまで

公開するかについては論争が発生する可能性がある

7.3 トヨタ過労死事件

7.3.1 QC サークルとは

- 第一線の職場で働く人々が継続的に製品・サービス・仕事などの質の管理・改善を行う小グループ
- 自主的な運営
- 品質管理 (Quality Control, QC) の考え方・手法などを活用し、創造性を発揮し、自己啓発・相互啓発をはかり、活動を進める

... 小野, 直井編著, 品質管理教本, 日本規格協会 (2006) より

7.3.2 労働基準法

- 教科書の記述に関わりがある
- 重要な問題なので労働基準法の条文を引用して説明する

第三十二条 使用者は、労働者に、休憩時間を除き一週間について四十時間を超えて、労働させることはならない。
〇２ 使用者は、一週間の各日にについては、労働者に、休憩時間を除き一日について八時間を超えて、労働させてはならない。

第三十二条の五 使用者は、日ごとの業務に著しい繁雑の差が生ずることが多く、かつ、これを利用した上で就業規則その他これに準ずるものにより各日の労働時間を特定することが困難であると認められる厚生労働省令で定める事業であつて、常時使用する労働者の数が厚生労働省令で定める数未満のものに従事する労働者については、当該事業場に、労働者の過半数で組織する労働組合がある場合においてはその労働組合、労働者の過半数で組織する労働組合がない場合においては労働者の過半数を代表する者との書面による協定があるときは、第三十二条第二項の規定にかかわらず、一日について十時間まで労働させることができる。

第三十三条 災害その他避けることのできない事由によって、臨時の必要がある場合においては、使用者は、行政官庁の許可を受けて、その必要の限度において第三十二条から前条まで若しくは第四十条の労働時間を延長し、又は第三十五条の休日に労働させることができる。ただし、事態急迫のために行政官庁の許可を受ける眼がない場合においては、事後に遅滞なく届け出なければならない。
〇２ 前項ただし書の規定による届出があった場合において、行政官庁がその労働時間の延長又は休日の労働を不適当と認めるときは、その後にその時間に相当する休暇又は休日を与えるべきことを、命ずることができる。
〇３ 公務のために臨時の必要がある場合においては、第一項の規定にかかわらず、官公署の事業（別表第一に掲げる事業を除く。）に従事する国家公務員及び地方公務員については、第三十二条から前条まで若しくは第四十条の労働時間を延長し、又は第三十五条の休日に労働させることができる。

第三十六条 使用者は、当該事業場に、労働者の過半数で組織する労働組合がある場合においてはその労働組合、労働者の過半数で組織する労働組合がない場合においては労働者の過半数を代表する者との書面による協定をし、これを行政庁に届け出した場合においては、第三十二条から第三十二条の五まで若しくは第四十条の労働時間（以下この条において「労働時間」という。）又は前条の休日（以下この項において「休日」という。）に関する規定にかかわらず、その協定で定めるところによって労働時間を延長し、又は休日に労働させることができる。ただし、坑内労働その他厚生労働省令で定める健康上特に有害な業務の労働時間の延長は、一日について二時間を超えてはならない。 (2 項以下略) ●

- この事件に関する教科書の記述はあまり正確でない
- 猿田、杉山 (編著), トヨタの雇用・労働・健康,
 税務経理協会, 2011 にしたがって紹介
 (左翼系の本なので読みにはできないが)

7.3.3 事件の経過

- 2002 年 2 月 9 日, 内野健一氏が工場での作業中に倒れ, 死亡
- 人事部は当初は労災申請に理解, 途中で労災 (過労死) を否定する立場に転ずる
- 妻, 労災申請 ⇒ 不支給決定
- 妻, 譲知労働局に不服審査申し立て ⇒ 労災でないとの判断
- 2005 年 7 月 22 日, 妻, 提訴: 被告を国, 豊田労働基準監督署長に対して遺族補償年金等の不支給処分取り消し請求, 「行政訴訟」
- 2007 年 11 月 30 日 判決, 国は控訴せず・判決確定

7.3.4 判決

- 豊田労働基準監督署長が原告に対し, 平成 15 年 11 月 28 日付けであった労働者災害補償保険法による療養補償給付遺族補償年金及び葬祭料を支給しない旨の各処分を取り消す
- 訴訟費用は被告の負担とする

7.3.5 裁判における争点

- 内野健一氏の残業時間数は？
- 内野健一氏の業務の質 (密度, ストレス) はどの程度であったか
7.3.6 主張の対立
- 妻: 創意くふう提案, QC サークル活動, EX 会 (班長会) の活動, 交通安全活動, 職場委員会はすべて業務である, 前月残業時間の平均も144時間
- 会社: 内野健一氏が会社にいた時間すべてについて仕事をしていたかどうかはっきりしない (雑談, コンピュータゲーム等)
- 判決: 前月残業時間106時間45分, QC サークル等は労働時間と認めるが労働組合活動等は労働時間と認めない

7.4 モラルに従う判断の方法
- 行為理論: 個々の行為ごとに, 自分のモラルの意識を頼りに判断する方法
- 規則理論: 規則はすべての行為に適用され, 人は規則に従って行為すればよいという考え方

... これらは相補的, どちらが適しているかは状況による
- 対話 vs 論争
- 教科書では倫理問題を討論するときには対話が重要で論争は不向きと主張
- 現実的には, 倫理問題は激しい論争の種になりやすい

7.4.1 決疑論
- 問題となる事例が明らかな典型的事例とどれだけ類似しているかに注意して判断をおこなう方法
- 「典型的事例」は「良い方の極端」から「悪い方の極端」までを網羅することが普通
- 相反問題や線引き問題の解決に使われる
 - 線引き問題: グレーゾーンがある案件で, どこで良し悪しを切り分けるかという問題

7.4.2 Seven-step guide
出典: 私利 (編著), 改訂版技術者倫理, 放送大学教育振興会, 2009
1. 倫理的問題を明確に述べよ
2. 事実関係を検討せよ
3. 関連する要因, 条件などを特定せよ
4. 取り得る行動を考案し, リストアップせよ
5. 行動案を検討せよ (検討事項は後述)
6. 行動を決定せよ
7. 上記全ステップを再検討せよ

87
行動案の検討
1. 危害テスト: この行為は他のものより危害が少ないか
2. 世間体テスト: 新聞で報道されても大丈夫か
3. 自己防衛可能性テスト: 証人喚問などを受けたとき弁明できるか
4. 可塑性テスト: 自分がその行為の影響を受けるとしても支持するか
5. 同僚による評価テスト: 同僚に説明したときの反応を考えてみる
6. 専門家集団による評価テスト: 専門家集団の倫理委員会はどうか
7. 所属組織による評価テスト: 会社等の倫理部門はどうか

7.4.3 功利的手法
出典: C. E. Harris et al. (日本技術士会訳編), 科学技術者の倫理, 第 3 版, 丸善, 2008

費用-便益分析
- 利用可能な選択肢を査定
- その行為のすべての対象者あるいはそれに影響を受ける者すべてに対し、各選択肢の費用と便益を査定
- 費用と比較して最大の便益を生むであろう決定をする

行為功利主義 最も功利性の高い行為を選択:
- 利用可能な選択肢を査定
- 対象者を査定
- 普遍性の検討: 他者が類似した状況で類似の行動方針を示したときに貫成できるか
- 便益および危害を検討し、最大の利益を生む行為を選択

規則功利主義 出典: C. E. Harris et al. (日本技術士会訳編), 科学技術者の倫理, 第 3 版, 丸善, 2008
- 児玉, 功利と直観, 勁草書房, 2010
- 「ある一定の状況においては常にある種の行為をせよ」という規則の中でもっとも功利性が高い規則を採用し従うべき
- ある行為が正しいのは、すべての人々によって道徳的に拘束力があると認められた場合に善を最大化するような連続の規則に合致している場合であり、その場合に限る
7.5 課題

教科書 2(技術者倫理事例集)IV エレベータの事故 p.40 (1) について考え、見解を書け。C 社、D 社、E 社および A 市の技術者のすべてについて回答すること。個別の技術者に関する文章は短くてよし。まわりの人と議論してよいが、自分の言葉で考えをまとめること。
8 事故責任の法の仕組み

8.1 前回の課題から

8.1.1 集計結果 (昼間主)

<table>
<thead>
<tr>
<th></th>
<th>社会的責任を果たしている</th>
<th>いない</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 社 (事故を起こしたエレベータ製造会社) 技術者</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>D 社 (今年の管理会社) 技術者</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>E 社 (昨年の管理会社) 技術者</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>A 市保守担当職員</td>
<td>17</td>
<td>69</td>
</tr>
</tbody>
</table>

8.1.2 集計結果 (夜間主)

<table>
<thead>
<tr>
<th></th>
<th>社会的責任を果たしている</th>
<th>いない</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 社 (事故を起こしたエレベータ製造会社) 技術者</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>D 社 (今年の管理会社) 技術者</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>E 社 (昨年の管理会社) 技術者</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>A 市保守担当職員</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

8.1.3 エレベータ製造会社の技術者に関するコメント

- マニュアルを渡すべき
- 自社で保守すべき
- 住民への説明
- 動作不良の原因究明
- 修理すべき
- 点検すべき
- 改良・再設計
- 技術指導すべき
- もっと高品質の製品を作るべき
- 情報を開示すべき
- 故障情報を管理会社と共有すべき
- 10 年も経過しているから問題ない
- 製品の不良について公表すべき
- 遺族に謝罪すべき (!)
- 遺族に賠償すべき (!)
8.1.4 現管理会社技術者に対するコメント

- 製造会社にマニュアルを要求
- 保守マニュアルの見直し
- 技術情報の収集
- 十分な調査
- 住民への説明
- 製造会社との連携が不十分
- 引き継ぎ不十分
- もっと点検すべき
- 修理すべき
- 安全対策が不十分
- 点検技術者の能力を審査
- 不作業
- 異常動作の究明 (!)
- 事故を予測すべき (!)
- 謝罪すべき (!)
- 賠償すべき (!)

8.1.5 前管理会社技術者に対するコメント

- 製造会社にマニュアルを要求
- 保守マニュアルの見直し
- 技術情報の収集
- 引き継ぎ不十分
- 過去の対応が不十分
- 不作業
- 警察に説明 (!)
- 異常動作の究明 (!)
- 住民への説明 (!)
- 謝罪すべき (!)
8.1.6 市の技術者に対するコメント

- 製造会社にマニュアルを要求
- 製造会社と管理会社の仲介
- 管理会社の審査をすべき
- 再発防止
- 謝罪すべき (!)
- 管理会社を監視 (!)
- 点検の頻度を上げる (!)
- すぐ改善すべき (!)
- 現場を把握すべき (!)
- 管理会社変更を住民に説明 (!)
- 問題を解決すべき (!)
- エレベータを複数設置 (!)
- 事故処理のシミュレーション (!)
- コストより安全性を取るべき (!)
- 経費節減はすべきでない (!)
- 機種更新 (!)
- 競争入札をやめる (!)

8.1.7 実際の事故について

港区、シンドラー側 4 社を提訴エレベーター死亡事故 東京都港区所有のマンションで 2006 年、都立高 2 年市の市川大輔さん=当時 (16)=がエレベーターに挟まれ死亡した事故をめぐり、港区は 6 日、製造元「シンドラー・エレベータ」(台東区) など 4 社に事故機の交換工事費用など約 11 億 1700 万円の損害賠償を求め東京地裁に提訴した。被告はほかにシンドラーグループの株式会社「シンドラーホールディング」(本部スイス)、保守点検会社「エス・イー・シーエレベーター」(台東区)、電気工事会社「日本電力サービス」(東京都多摩市)、うちシンドラーグループ 2 社に対しては、事故機と同じ不具合があったとして、別のエレベーターの交換工事費用など約 2 億 6 千万円の支払いも併せて求めた。

訴えによると、事故は 06 年 6 月 3 日、エレベーターのブレーキ部分の不具合で発生。港区は、シンドラーグループ 2 社には製造責任があり、保守管理も怠ったことが原因と主張している。シンドラーエレベータは「提訴されたことは非常に遺憾です。公判で当社の立場をしっかりと主張していきたい」とコメントした。【共同通信 2010年 7月 6日】

- 東京都港区のページに進捗状況が記載されている
- 判決については記載なし、提訴から約 2 年経過しているので、時間がかかっている模様
8.2 コメント欄から

- 大学の教員に残業の規定はあるか?
 ⇒ 大学による。琉球大学の場合、教員には原則として残業手当はつかない。

- 沖縄と本土企業でサービス残業に違いはあるか?
 ⇒ 会社によると思われる。

- 技術者は特許より安全を重視すべきだと思う。
 ⇒ 新技術開発にだれか金を出すのかという問題が生じる。
8.3 今回の講義について

- 教科書では個別の法に関する解説がなされているが...
- 工学部の学生には、必修科目で法についてきちんと学ぶ機会がない（高等学校の「現代社会」の内容は不十分）

講義後半で、教科書を離れ、法の持つ「階層構造」や、法令の条文の読み方について解説する

8.4 注意・過失・欠陥

8.4.1 注意義務

- 人は行為をするとき、注意をはたらかせる義務を負う（注意義務）
 - 状況認識の注意義務: 注意をはたらかて状況を認識する
 - 結果回避の注意義務: その行為が他人に損害を与える結果になるかもしれないことが予想できれば、注意をはたらかせて、その結果を回避するように行動する

8.4.2 過失

- 注意義務を負う人が、注意を用いないこと、不注意であること、注意を怠ることを、過失という
 - すべき注意を怠ること
 - 予見可能であるのに、不注意で予見しないこと
 - 回避可能であるのに、不注意で回避しないこと

- 教科書では、十分に注意すれば、過去は発生せず、欠陥は生じないと主張している
- 我々の知識はつねに不完全なので、担当者はこの見解には同意しかねる

8.5 職務と注意義務

- 技術者は、以下の事項に対して注意義務を負う
 - 自分の職務として割り当てられている業務
 - 目前にあることが自分の業務であるかどうかの判断
 - 通常は自分の業務でなくても、緊急の場合は、自分にできる業務

- 職務とする業務について注意義務を怠ることは業務上の過失とされる

8.6 品質管理

8.6.1 生産技術

- 同じ原料を使って
- 同じ装置で
- 同じ製造条件下で
- 同じ品質のものが
- 長期に再現性良く生産できる技術
8.6.2 品質特性の分類

- 基本量: ある量体系の中で、取決めによって互いに機能的に独立であると認められている諸量のうちの一つ
- 組立量: ある量体系の中で、その体系の基本量の関数として定義される量
- 工業量: 複数の物理的性質に関係する量で、測定方法によって定義される工業的に有用な量; 硬さ、表面粗さなど

8.6.3 統計的品質管理 (Statistical Quality Control, SQC)

典拠 http://www.atmarkit.co.jp/im/terminology/

- 品質管理の方法の中で、統計的手法を用いて用いるもの。
- 製品の1つ1つの品質ではなく、生産工程全体を対象として品質特性を測定し、その分布を見て管理を行う。

8.6.4 総合的品質管理 (Total Quality Control, TQC)

典拠 http://www.atmarkit.co.jp/im/terminology/

- 主に製造業において、製造工程のみならず、設計・調達・販売・マーケティング・アフターサービスといった各部門が連携をとって、統一的な目標の下に行う品質管理活動のこと。
- 現場の QC サークルを中心とした「全員参加型」の活動
- Total Quality Management (TQM) は米国で提案された類似の考え、TQC と TQM を区別しないこともある

8.7 事故責任の法

- 事故の責任:
 \[
 \begin{align*}
 & \text{法的責任} \\
 & \text{倫理的責任}
 \end{align*}
 \]

- 関連する法:
 \[
 \begin{align*}
 & \text{事故の責任追及の法 (民法, 刑法)} \\
 & \text{事前に事故を抑止する法 (規制法令)}
 \end{align*}
 \]

- 国内法
- 国際法
- 外国法

グローバル化の下では国内法だけでは不十分
8.7.1 事後の責任追及の法の例

- 刑法，業務上過失致死傷罪
- 民法，不法行為法
- 製造物責任法
- 民法，使用者（雇い主）の責任
- 国家賠償法

8.7.2 技術にかかわる法規 (全分野共通)

中村，(社) 近畿化学協会工学倫理研究会 (編著)，技術者による実戦的工学倫理，第 2 版，化学同人，2009，p.164(改変)

- 製造物責任: 製造物責任法
- 安全衛生: 労働安全衛生法，毒物及び劇物取締法
- 保安防災: 消防法，高圧ガス保安法
- 環境保全: 環境基本法，大気污染防治法，水質汚濁防止法
- 資源利用: 資源の有効な利用の促進に関する法律，エネルギーの使用の合理化に関する法律

中村，(社) 近畿化学協会工学倫理研究会 (編著)，技術者による実戦的工学倫理，第 2 版，化学同人，2009，p.164
小向，情報法入門，NTT 出版，2011

- 交通: 船舶安全法，道路交通法，航空法
- 知的財産: 特許法，著作権法，不正競争防止法
- 情報 (以下すべて略称): 個人情報保護法，不正アクセス禁止法，IT 基本法，行政機関個人情報保護法，情報公開法，通信傍受法，電子契約法，独占禁止法，プロバイダ責任法 など

8.7.3 技術にかかわる法規 (個別分野)

中村，(社) 近畿化学協会工学倫理研究会 (編著)，技術者による実戦的工学倫理，第 2 版，化学同人，2009，p.164(改変)

<table>
<thead>
<tr>
<th>薬事法</th>
<th>農薬取締法</th>
<th>食品衛生法</th>
</tr>
</thead>
<tbody>
<tr>
<td>火薬類取締法</td>
<td>飼料安全法 (略称)</td>
<td>家庭用品品質表示法</td>
</tr>
<tr>
<td>電気事業法</td>
<td>電気通信事業法</td>
<td>ガス事業法</td>
</tr>
<tr>
<td>建築基準法</td>
<td>鉱山保安法</td>
<td>原子炉等規制法</td>
</tr>
<tr>
<td>鉄道営業法</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 法規は技術的な問題を未然に防ぐための「知の集大成」
- 法規を遵守するだけでは十分とは限らない

- 今回の講義以降、いくつかの法規について (教科書にないものも含め) ある程度詳しく論じる; 今回の講義だけですべてを説明すると分量が多すぎるので、以下の講義に適宜分散させる

- 知的財産に関する法規については電気電子システム工学実験 II におけるエンジニアリングデザインの講義で取り扱う
8.8 法令

- 事故責任の法の仕組み (第 8 回), 法的責任とモラル責任 (第 9 回), コンプライアンスと規制法令 (第 10回) いずれも法令がテーマ
- 説明責任 (第 11 回), 内部告発 (第 12 回), 環境と技術者 (第 13 回) も法令と関連
- 法令に関する講義が成立するためには法令そのものに関する知識が必要
- 高等学校の政治経済は選択, 大学の法学も共通教育のひとつ; 履修者の大半は法令に関する予備知識不足

⇒ 法令に関する講義

以下の議論の参考文献:

- 田島, 法令入門, 第 3 版, 法学書院, 2008
- 杉光, 理系のための法学入門, 改訂第 6 版, 法学書院, 2008
- 松尾, 高橋, 法学, 有信堂, 2009
- 法令とは: 法律と命令をあわせた言葉, さらに条例や規則等を含むこともある
- 法律:
 - 広義では不文法を含めた「法」と同義
 - 狭義では国会によって制定された成文法
- 命令: 行政府によって制定される成文法
- 条例, 規則等については後述
- 法令には上下関係がある

8.8.1 成文法と不文法

- 成文法: 一定の手続と形式によって内容が決定され, 文書に表された法, 制定法ともいう
- 不文法: 一定の手続により制定されているわけではないが, 社会生活の中で現実に行われている法 (詳細は後述)
 - 慣習法
 - 条例法
 - 条理法

8.8.2 法実証主義と自然法論

- 成文法と不文法を総称して実定法という
- 法実証主義: 実定法だけが法だという考え方
- 自然法論: 人間の本性に基づいて成立し, 実定法を超える法 (自然法) の存在を認めるべきだという立場
- 法実証主義と自然法論は対立関係にある

97
8.8.3 立憲主義

- 憲法によって国家権力を制限し、個人の権利や自由を守ろうとする考え方、また、その制度 (日本語大辞典第2版)
- 以下の基本原理に基づく:
 - 自由の保障
 - 権力分立
 - 国民主権
 - 法の支配

8.8.4 法の支配

- 支配は気まぐれで恣意的な人の主観的意味ではなく、客観的に存在する明確で安定的な法にしたがっておこなわなければならないという原理
- 「人の支配」と対立する概念で、政治を法に従わせる原理
- 法治国家が必ず満たすべき条件
- 次の目的を持つ:
 - 被統治者に権力行使の予測可能性を与える
 - 権力行使に正当性を与える

8.8.5 法令の種類

- 憲法は国内では最高の優先順位を持つ法
- 憲法は以下の6種類の成文法を定める (括弧内は制定の主体)
 - 法律 (国会) 議院規則 (衆議院, 参議院)
 - 政令 (内閣) 最高裁判所規則 (最高裁判所)
 - 条例 (地方公共団体) 条約 (内閣, 国会が承認)
- 憲法とこの講義の関連は薄いので、これ以上の議論はしない
- 命令等には法律によって定められているものもある
 - 内閣府令 (内閣府設置法), 公正取引委員会規則 (内閣府設置法), 国家公安委員会規則 (内閣府設置法), 省令 (国家行政組織法), 中央労働委員会規則 (国家行政組織法), 会計検査院規則 (会計検査院法), 人事院規則 (国家公務員法), 地方公共団体の規則 (地方自治法) など

8.8.6 内容から見た命令の分類

- 執行命令: 法律を執行するために補充的・細則的事項を定めたもの
- 委任命令: 法律の規程がある事項について定めることを政府に委ねているもの

98
8.8.7 法秩序を保つしくみ

- 法令: 無矛盾で統一された体系を成す必要があります
- 法秩序の論理的-一体性を確保するための原理: 以下の4個
 1. 所轄事項の原理
 2. 形式的効力の原理
 3. 後法優先の原理
 4. 特別法優先の原理

所轄事項の原理

- 法形式が異なる法令間の矛盾を解消するための原理
- 法令の種類ごとにその受け持分野（所轄事項）を守らせることにより矛盾を防ぐという考え
- 所轄事項が競合するためにこの原理だけでは問題を解決できないことがある
- 各種法令の所轄事項については後述

形式的効力の原理

- 法形式が異なる法令間の矛盾を解消するための原理
- 上位の法令の効力が下の法令の効力に優先する

後法優先の原理

- 同一形式の法令間の矛盾を解消するための原理
- 後から制定された法令が先に制定された法令に優先する

特別法優先の原理

- 同一形式の法令間の矛盾を解消するための原理
- 特別法が一般法に優先する
 - 一般法: ある事項について広く一般に規定した法令
 - 特別法: 特定の場合、地域、人などを限って規定した法令
8.8.8 法令の所轄事項

- 慣行: 制限なし
- 法律: 慣行の定める範囲
- 議院規則: 各議院における会議その他の手続き及び内部の規律に関する事項, 国会法と競合する
- 最高裁判所規則: 訴訟に関する手続き, 弁護士, 裁判所の内部規律及び司法事務処理に関する事項 (憲法第 77 条), 法律と競合するかどうかについては議論がある
- 政令:
 - 慣行及び法律の規定を実施するために必要な補充の事項で内閣又是その下にある行政機関が処理すべきもの (執行命令)
 - 個別の法律によって特に委任された事項 (委任命令)
- 内閣府令・省令
 - 法律又は政令を実施するために必要な補充の事項で制定権者たる内閣総理大臣又は各省大臣が主任の大臣として分担管理する事務に関するもの (執行命令)
 - (法律又は政令の特別の委任がある場合) 法律又は政令の所轄事項に属するもの (委任命令)
- その他の命令: 対応する法律等に規定がある
- 条例:
 - 地域における事務
 - 法律又はこれに基づく政令により処理することとされる事務
 - その他各種法律に規定がある
- 地方公共団体の規則: 地方公共団体の長の権限に属する事務

8.8.9 不文法

慣習法

- 公の秩序又は善良の風俗に反しない慣習は, 法令の規定により認められたものの又は法令に規定されていない事項に関するものに限り, 法律と同一の効力を有する
- 民法, 商法に例がある

判例法

- 先例となる判決 (判例)
- 一般的拘束力があるわけではない
- 実務上は強い影響力を持つ
条理法

- 条理とは、社会一般によってそれが物事の筋道であるとみなされるものをいう
- 裁判事務心得（明治 8 年大政宣布告第 103 号3条）、民事ノ裁判ニ成文ノ法律ナキモノハ習慣ニ依リ、習慣ナキモノハ条理ヲ推考シテ裁判スヘシ
- こんな古い文言が現代でも生きている

8.8.10 法令の形式

- 1945 年以前は漢文調の文語体、片仮名書き
- 1946 年以降口語化
- 古い法令は旧表記のまま残されたが 1995 年以降平仮名化が進み改善

8.8.11 法令の形式

- 篠条書きの形を取り、第1条以下、「条」という番号付けがなされる；条は大抵の法令の基本単位
- 通常は全体を本則と附則に区分、本則を前に置き、附則を後に置く
 - 本則: 本体的内容を成すもの
 - 附則: 本則の施行に伴って必要となる付随的内容
- 冒頭に目次が付いているものもある
- 長い法令では、条をより大きな階層構造に分類する
 分類は大きい方から順に編 > 章 > 節 > 款 > 目
- 「章」の利用頻度がもっとも高く、その上位の編を用いることは稀; 目まで細分することも稀

条の読み方

- 条には原則としてひとつ的事項を組み込むが、例外もある
- 条の内容をさらに区分し、文章を切って別行に表記することがある；これを項という
- 戦後の法令では、第2項以降には2, 3, 4という番号が付くが、第1項のみは番号がない
- 戦前の法令には項の番号はない
- 条または項中に複数の事項を列挙する必要があるときには、縦書きのときには漢数字、横書きのときには (1), (2), (3) といった番号を付す；これを号という
- 条中に表が用いられることがある
- 複数の条に関連する表は別表として掲載されることがある
- 条には見出しが付く；見出しがその条の内容を簡潔に表したもので、条の冒頭に () で囲って表記される（目的的、定義）など
- 本文は総論・各論、基本・例外などのように体系的に構成されており、全体を通して読まずないと誤解することがある
多くの法令では、冒頭に目的規定、趣旨規定（その法令が何のためのものかという記述）がおかれる。
法令が上位の法令に違反しないかどうかには注意が必要；違憲か否か（最高裁判所が最終的に判断）、条約違反か否か
法令には、詳細規定を下位の法令に委ねているものがある；このような場合、下位の法令を併読しないと意味が通らない。

8.8.12 法令特有の言葉使い
- 又はと若しくはの使い方：又はは大分類、若しくは小分類；
 - 論理式 (A or B) or C
 - 法令風に読むと「A 若しくは B 又は C」
- 並びにと及びの使い方：並びには大分類、及びは小分類
- 緊急性に応じて、速やかに（緊急性大）、直ちに（緊急性中）、遅滞なく（緊急性小）の使い分けがなされる
- 不等号については、以上（≥）と超える（>）、以下（≤）と未満（<）が使い分けられる

102
8.9 課題

教科書 [2], 事例 III(自動回転ドア事故) を読み、36 ページ①について考え、見解を述べよ。まわりの人と議論してよいが、自分の言葉で考えをまとめる事。

103
9 法的責任とモラル責任

9.1 前回（回転ドア事故）の課題から

9.1.1 昼間主

- 暗黙知の継承の失敗
- 小事故の軽視
- センサの性能不足
- 管理者とメーカーの認識のずれ
- メーカーの要望を無視
- 見栄えを過剰に重視
- 利便性を過剰に重視
- 回転ドアという構造自体に問題
- 本質的安全性の軽視
- 制御安全を過信
- 安全装置の性能が不十分
- 管理・対策が不十分
- 利用者層の想定に問題
- 子供の蹴の問題
- 安全に関する意識が低い (!)
- ブリーキでなく「戻る」装置にすべき (!)

9.1.2 夜間主

- メーカーの要望を無視
- 暗黙知の継承の失敗
- 見栄えを過剰に重視
- 利便性を過剰に重視
- 管理者とメーカーの認識のずれ
- 本質的安全性の軽視
- 制御安全を過信
- 管理・対策が不十分
- 利用者層の想定に問題
- 子供の蹴の問題
- ビル側が改造するのが悪い
- 制御安全に頼るのは間違いなので
9.1.3 担当者コメント：安全設計の手順

- エンジニアリングデザイン概要でも説明するが、
 1. 本質的安全設計、構造安全:
 (a) ハザードをなくす (b) 危害が小さくなるよう設計する。
 2. 安全防護、安全装置:
 (a) 障壁等によってハザードから人間を隔離,
 (b) 障壁等を聞くときには装置を停止
 3. 使用上の情報の提供: 警報、警告表示、危険を回避するためのマニュアル等を準備する。

- 今回の回答には妥当なものが多かった
- 建築には芸術的要素があり、機能性を無視した設計がなされることも多い
- 可能な限り本質的安全設計をするのが安全工学の大原則
- 小事故を軽視してはいけないというのも安全工学の大原則
- 当然の原則を無視したことが事故の背景、この意味では事故は予見可能
- 個人的には、回転ドアなどという構造に問題がある技術を採用せず、かわりにエアカーテンを採用すべきだと思う
- ある地域で文化の中に溶け込んだ技術が他地域に伝播するとき、文化的要素 (暗黙知) が脱落すること
 またはしばしば発生する。暗黙知の脱落は発見しにくいので、この点を責めるのは酷 (事故前にはおそらく
 予見困難)
- 交通機関等で、小さい事故に関する多くの報告が横がっているものも要注意、大事故が起こるのは時間
 の問題の可能性がある

9.1.4 コメント欄から

- 二重自動ドアの方が回転ドアより良いのか？
 ⇒ 安全性に関してはそうだが、二重自動ドアには、人の出入りが多いとつねに開放状態になるという
 問題がある。上述のようにエアカーテンとの併用が合理的
- 技術的な側面からすべての事故をなくすことは可能か
 ⇒ 人は不便なものを使わない、安全装置が利便性を著しく損なうと利用者が安全装置を無効化すること
 がある。また、技術が想定外の使い方をされることもある。よって、技術的に事故を根絶することは
 おそらく不可能。
- JABEE をやめるにはどうしたら良いか、署名を集めると効果があるか。
 ⇒ JABEE のせいで学生の負担が増すことはあまりない。学則や大学設置基準に由来する規定を
 JABEE のせいであると思っている学生がいるようだが、誤解である。電気電子工学科が今後 JABEE
 を継続するか否かは検討中で、まだ結論が出ていない。署名を集めるのは自由だが、学生がそれで何を
 得たいと考えているかが問題。企業は「採用後に新入社員を教育する余裕はない」と主張しているた
 め、大学の教育課程は (JABEE の有無にかかわらず) 今後厳しくなる見込み。
法令特有の言葉使いはなぜ発生したのか？
⇒ 推測であるが、(1) 法令は簡単に作ることも廃止することもできず、新しい法令は古い法令を踏襲する必要があるため、現代語と言葉遣いが違う、(2) 日常言語は精密にある概念を定義するには不向きであるため、法令の曖昧を排除した文章は日常言語と異なる言い回しを含む、ということではないかと思う。なお、法令を作る際に、文言をなるべく曖昧にして裁量の範囲を広げようとすることもあり、この場合は、文言はさらにわかりにくくなる。

入札には問題があると思う。やめられないのか？
⇒ 官公庁との取り引きがある業者の既得権として固定してしまうと、別の問題が発生する。だから、入札が一概に悪いとも言えない。安全性・信頼性と価格・取り引きの透明性のあいだに相反が発生しているケースであり、理想的な解はない。
9.2 カネミ油症事件

9.2.1 事件概要
- カネミ倉庫株式会社: 事件当時米糠から取った粗製油を原料にして食用ライスオイルを生産 (工程の副産物はダーク油)、加熱工程で PCB を循環させた配管を使用
- 1968年、西日本の養鶏場で、カネミ倉庫のダーク油を使った配合飼料によって鶏40万羽が死亡
- 同年、西日本で吹き出物、内臓疾患などの油症発生
- 届出患者数14,000人、認定患者数1,824人(1983年)

9.2.2 経過
1968年10月4日 福岡県大牟田保健所に使用中のカネミライズオイル提出
1968年10月14日 九州大学医学部、福岡県衛生部などの油症研究班発足
1968年10月15日 原因物質はヒ素との報道、油症研究班は否定
1968年11月4日 油症研究班がライスオイル中の異常物質はPCBであると発表
1984年頃 原因物質がダイオキシン類の一種であるポリ塩化ジベンゾフラン (PCDF)であると特定

9.2.3 被害者救済
- 事故当時、被害者が損害賠償を請求する根拠となる法令は不法行為法
- PCB(事故当時は原因物質とされた)が混入した原因が問題:
 - ピンホール説: 配管の腐食孔からPCBが漏れたという説 (九州大学骨髄)
 - 工作ミス説: 溶接ミスによって配管に穴が開きPCBが漏れたという説 (鍾淵化学工業が従業員の供述に基づき主張)
- 裁判は長期化、1987年に最高裁で和解、これは被害者救済につながらず、裁判の結果は教科書p.141の表9.4
- 国による仮払金の精算は2007年
- 教科書において著者は関係者の法的責任と倫理的責任について論じている (詳細は略)

9.3 事故調査とヒューマンエラーの防止
以下の出典: S. Dekker(小松原、十亀監訳)、ヒューマンエラーを理解する、海文堂、2010

9.3.1 ヒューマンエラーの古い見方
- 複雑なシステムは基本的には安全である
- 信頼の置けない人間がシステムを弱体化する
- システムをより安全にするためには手順の厳格化、自動化、監視によって人間の関与を制限すべきである
ヒューマンエラーはトラブルの原因である

失敗を説明するためには、エラー、手抜き、能力不足、不適切な判断、間違った決定などを見つけねばならない

9.3.2 古い見方の魅力

「正義の味方気取り」は気分が良い

犯人探しにより社会的なイメージを守ることができる

専門的な作業者の「全能感」

9.3.3 古い見方の問題点

手順を複雑化しても人々がそれについてゆける保証がない

新技術を追加しても、システムそのものが変わらなければ、問題が発生する形態が変わること

「犯人探し」は次にエラーを起こしやす人への圧力となり、証拠隠滅などを誘発しかねない

局所的合理性：事故を誘発した判断は判断時点で、限られた情報の素では、合理的であった可能性がある

(悪意がなければ) 誰も失敗なんてしたくない苦

9.3.4 ヒューマンエラーの新しい見方

複雑なシステムは基本的に安全ではない

複雑なシステムは相反する目標のトレードオフの上に成立している

人々は業務の実践を通じて安全を創出しなければならない

ヒューマンエラーはシステムの深層に潜む問題が表面化したもの

失敗を説明するためには、そのとき人々がどのような状況におかれ、何を考えたかを分析する必要がある

9.3.5 新しい見方の背景

エラーを分析すると、多くの場合構造的な問題が発覚した

エラーと事故との関係は間接的なことが多い

事故は、システムが正常に機能しているときの構造的な副産物であって、正常に機能しているプロセスを誰かが邪魔した結果ではないことが多い
9.3.6 新しい見方の特徴

- 個人の問題ではなくシステム的な問題を調べる
- ヒューマンエラー防止の方策として手順を細かくすることには頼らず（担当者の自己裁量の余地を残す）、また新技術を盲信しない
- 人が完璧であることは想定せず、人を裁くことを避ける
- 「その状況において、その判断がなぜその時点で合理的だったのか」を分析する

9.3.7 失敗の分析の(悪い)特徴: 後知恵バイアス

- 回顧指向: 結果がわかった上で一連の出来事を振り返る
- 幻想指向: 事実を高視し、事故を避けるためにできたこと、すべきであったことを詳細に指摘する
- 審判指向: 犯人探しに躍起になる
- 近傍探求指向: 事故時に近くに居た人に過剰に焦点を当てる

▷ 失敗の分析自体は重要
▷ 上記指向に陥ると失敗の正しい理解の妨げとなることがある

9.3.8 後知恵バイアスがなぜ悪いか

<table>
<thead>
<tr>
<th>事故途上</th>
<th>事故後</th>
</tr>
</thead>
<tbody>
<tr>
<td>次に起こりうること</td>
<td>いろいろな可能性がある</td>
</tr>
<tr>
<td>ある対策がひきおこす結果</td>
<td>未確定</td>
</tr>
<tr>
<td>問題の原因</td>
<td>特定できない</td>
</tr>
<tr>
<td>状況に関する知識</td>
<td>不十分</td>
</tr>
</tbody>
</table>

- 事故時にはリアルタイムで続々と困難な問題が発生
- 不十分な知識に基づいて瞬時に困難な判断をする必要がある

9.3.9 後知恵バイアスの詳細

- あらさがし: 収集した「あるべき姿」のデータと実際のデータを詳細に比較し、
 - あとでわかった手順を過去に押しつける
 - あとでわかった使えるデータを過去に押しつける
 - その事故に適用すればうまくいくきそうに他分野等の行動規範等を押しつける
- データのまとめ食べ: すべてのデータの中から、後から見ると事故と関係ありそうに見えるデータだけを抜き出し、事故と関係なさそうなデータは捨てて、事故のストーリーをつくりあげる
- shopping bag:
 - 後知恵に基づき、事故前に当事者が「気付くべきであった」兆候をすべて抜き集める
 - そのデータがその時点で利用可能だったか、観察可能だったかを度外視して議論する
- あやしい雲が出ていたとか、鯨が打ち上げられたとか…

- 事故分析の際に、～すべきではないか、～しなかった、もし～していれば、などと考えることは必ずしも効率的ではない

- 「実際におこらなかった事象」について分析するのは時間の無駄

9.3.10 失敗という言葉

- 失敗という言葉は後知恵の高みから過去を見下ろした言葉
- 安易に失敗という言葉を使うべきではない

9.3.11 ヒューマンエラーを理解するために必要なこと

- 反事実、裁くこと、懲ること、現場に責任を押し付けることを避ける
- 当事者がその時点で手にしていたデータに基づき、当事者の立場になって考える
- 過去の状況そのものは相当部分復元できる
- 当事者の当時の心理を正確に知る方法はない
- 以下の検討から始めることが有用
 - 時間とともにどのように状況が変化したか
 - 当事者がそれをどのように評価し、行動し、それがどう状況を変えたか
 - 当事者の使っていた機器、所属組織、環境等は当事者にどのような影響を与えたか

9.3.12 事故の原因は何か

- 複雑なシステムの事故には単一のわかりやすい原因など存在しないことがふつう
- 事故調査報告書に記載される事故の原因は、調査官等の立場から組み立てられたもの
- 事故の原因よりは「複数の説明」を考えた方が有益
- 法的な理由などで原因を特定しなければならないときには、(複数の)推定原因という言い方で断定をやわらげる方法もあるが、効果は限定的
9.3.13 事故モデル

- 事故分析にはモデルを立てることが有用
- 以下の3種のモデル（詳細は後述）がある；これらは排他的ではなく、併用してもかまわない
 - 事象の連鎖モデル
 - 疫学的モデル
 - systemic model
- モデルを立てることには欠点もある：考え方が制約される

事象の連鎖モデル

- 因果関係の連鎖（将棋倒し）によって事故を説明するモデル
- 利点：
 - わかりやすい
 - 事故再発防止のために連鎖の早い段階に防護措置を設置するという対策が取れる（万能ではないので注意）
- 欠点：
 - 事象の選択に主観が入ることが不可避
 - ヒューマンエラーの古い見方に陥りやすい

疫学的モデル

- 事故は長期間潜在していた欠陥が活性化した結果であるという考え方
- 事象の連鎖モデルと類似、「複数の防護策の欠陥をすべてずすり抜けることで事故が発生した」というイメージ
- 利点：事故の分析に有用
- 欠点：
 - 事故の予測にはあまり役に立たない
 - ヒューマンエラーの古い見方に陥りやすい

systemic model

- 安全はシステムの要素と環境との相互作用の結果として現れる特性であり、事故は要素の失敗ではなく不適切な制御や開発上の安全関係の制約により発生するという考え方
- 事故をシステムの通常機能の副産物であると解釈する
- 利点：事象の記述力が高く、複雑な現象を説明できる
- モデル自体がわかりにくくなることが欠点であると思われる (担当者 (半焼) の見解)
9.3.14 事故の分析

- 時間軸を作り、事故を時間軸に沿って分析することが重要
- 当事者への聞き取りには注意が必要
 - 記憶は不正確
 - 記憶は出来事を実際にそうであった以上に秩序立ててしまう傾向がある
- 事故の流れ: 時間軸に沿った事実（データ）の羅列
- 分析結果: 時間軸に沿った概念の系列（そのとき何が起きたか、といった解釈）
- 相補的な2種類の分析法:
 - ボトムアップ: データから概念に向かう分析
 - トップダウン: 概念からデータに向かう分析
- データと結論の関係、結論と事故との関係の分析結果を記録しておくことが有用

9.3.15 人間がトラブルを起こす原因

- 認知の固定: ひとたび状況判断をし、先の判断と矛盾する新情報を受け入れにくくなる
- 計画の変更が必要なに古い計画にこだわる
- ストレス: 要求と利用可能な資源のギャップによりストレスが発生し、以下の問題を引き起こす
 - トンネル効果: 作業環境のより狭い範囲しか見なくなる
 - 回帰: 現状に合わなくても過去に学んだ手法を適用
- 疲労: 警戒心、認知、記憶に悪影響、意識の抜け
- 粗雑な知識
- 新技術:
 - システムや作業者に新たな能力を与えるか
 - 問題も発生させる: 運用要求の増大、既存手順等との不適合、現場の状況に合わせるための手間、システムの破れ方の変化、前例のない故障と脆弱性、新知識や技能の要求
- 自動化の驚き: 自動化されたシステムが実際にやっていることが期待していることと違
- 手順を墨守すべきか応用すべきかという葛藤

9.3.16 勧告

- 事故分析は安全性向上のための勧告作りにより一応完結（実施されなければ意味がないが）
- 勧告の作成方針: SMART
 - Specific: 明確、詳細、具体的（どの部署がいつ何をするか）
 - Measurable: 勧告の達成度が定量的に評価できる
 - Agreed: 勧告を実施することへの合意がある
 - Realistic: 実現可能であること
 - Time-bounded: 時間制限をつけること
9.4 製造物責任法

製造物責任法
（平成六年七月一日法律第八十五号）

（目的）
第一条 この法律は、製造物の欠陥により人の生命、身体又は財産に係る被害が生じた場合における製造業者等の損害賠償の責任について定めることにより、被害者の保護を図り、もって国民生活の安定向上と国民経済の健全な発展に寄与することを目的とする。

・法律の名称、制定年月日に続き、まず本則が記載される

・（目的）と書かれている部分は見出し、第1条で法律の目的が規定されていることがわかる

（定義）
第二条 この法律において「製造物」とは、製造又は加工された物品をいう。
2 この法律において「欠陥」とは、当該製造物の特性、その通常予見される使用形態、その製造業者等が当該製造物を引き渡した時期その他の当該製造物に係る事情を考慮して、当該製造物が通常有すべき安全性を欠いていることをいう。
3 （一旦省略）

・第2条の見出しは定義、この条でこの法律に関する概念が定義されていることがわかる

・第2条の下に2という数字が付いていることから、この行が第2条1項であることがわかる

・第2条2項で欠陥を定義

3 この法律において「製造業者等」とは、次のいずれかに該当する者をいう。
1 当該製造物を業として製造、加工又は輸入した者（以下単に「製造業者」という。）
2 自ら当該製造物の製造業者として当該製造物に関係の氏名、商号、商標その他の表示（以下「氏名等の表示」という。）をした者又は当該製造物にその製造業者と誤認させるような氏名等の表示をした者
3 前号に掲げる者のほか、当該製造物の製造、加工、輸入又は販売に係る形態その他の事情からみて、当該製造物に関係の製造業者と認めることができる氏名等の表示をした者

・第2条3項で製造業者等を定義

・定義に1号、2号、3号がある

（製造物責任）
第三条 製造業者等は、その製造、加工、輸入又は前条第三項第二号若しくは第三号の氏名等の表示をした製造物であって、その引き渡したものの欠陥により他人の生命、身体又は財産を侵害したときは、これによって生じた損害を賠償する責に任ずる。ただし、その損害が当該製造物についてのみ生じたときは、この限りでない。

・第3条の見出しは製造物責任、この条で製造物責任の概念が定義されている

（免責事由）
第四条 前条の場合において、製造業者等は、次の各号に掲げる事項を証明したときは、同条に規定する賠償の責めに任じない。
1 当該製造物をその製造業者等が引き渡し時の科学又は技術に関する知見によっては、当該製造物にその欠陥があることを認識することができなかったこと。
二 当該製造物が他の製造物の部品又は原材料として使用された場合において、その欠陥が専ら当該他
の製造物の製造業者が行った設計に関する指示に従ったことにより生じ、かつ、その欠陥が生じたことにつき
過失がないこと。

- 第5条の見出しは免責事項、第4条は免責について定めている
- 続く数字が漢数字なので、この条には2項以降はなく、第4条1項、第4条2項というふうに読みることが
 わかる

（期間の制限）

第六条 第三条に規定する損害賠償の請求権は、被侵害又はその法定代理人が損害及び賠償義務者を知っ
た時から三年間行わないときは、時効によって消滅する。その製造業者等が当該製造物を引き渡した時から
十年を経過したときも、同様とする。

2 前項後段の期間は、身体に蓄積した場合に人への健康を害することとなる物質による損害又は一定の潜
伏期間が経過した後に症状が現れる損害については、その損害が生じた時から起算する。

- 第5条の見出しは期間の制限、製造物責任を有する期間について定めている
- 第5条は、続く数字がアラビア数字なので、第5条1項と第5条2項から成ることがわかる

（民法の適用）

第七条 製造物の欠陥による製造業者等の損害賠償の責任については、この法律の規定によるほか、民法
（明治二十九年法律第八十九号）の規定による。

- 第6条の見出しは民法の適用
- この条の記述から、製造物責任法を理解するには民法も読まなければならないことがわかる

附則 抄

（施行期日等）

1 この法律は、公布の日から起算して一年を経過した日から施行し、その法律の施行後にその製造業者
等が引き渡した製造物について適用する。

- 本則の後に附則が続く
- 電子政府の総合窓口では附則は略されている
- 以下、
 木ノ下、PL 法の知識と Q&A、改訂第2版、法学書院、2009
 に基づいて説明

9.4.1 製造物

- 製造又は加工された動産
- 大根は製造物ではないが、大根の渦物は製造物
- 電気は製造物ではないという見解が主流
- データのみのソフトウェアは製造物ではないが、DVD 等のメディアで配付した場合は製造物となる可
 能性がある
- 中古品も製造物、製造段階の欠陥に対しては製造者が責任を負うが、そうでないものについては議論が
 ある
9.4.2 製造業者

- 業務者是製造業者
- 業務として製造しているのでなければ製造物責任法の対象になる
- 部品業者は製造業者だが免責されることもある
- 販売元も製造物責任を負う可能性がある

9.4.3 責任

- 製造物責任法の責任は無過失責任
- 製造者の過失を立証する必要はない
- 製造物に欠陥があれば責任が発生する
- 民法における過失責任の考え方と比較すると、無過失責任の採用は画期的

9.4.4 欠陥

- 欠陥は第2条2項で定義されている
- 欠陥をさらに、製造上の欠陥、設計上の欠陥、指示・警告上の欠陥の3種に分類することができる
- 製品が広告通りの機能を有しないときに瑕疵があるという
- 瑕疵は欠陥より広い概念で、瑕疵があったとしても製造物責任法の対象とならないことがある

9.4.5 免責

- 製造段階における最高の科学技術に関する知識を持ってしても知ることができなかった欠陥については、欠陥があったとしても免責される
- 部品業者が製品の開発・設計についての知識を持たないままで製品業者の指示通りに部品を設計して製品に欠陥が発生した場合、部品業者は免責される
9.5 課題

教科書 [1], 144 ページの討論 1(国の責任を否定した判決と国の責任を認めた判決のどちらが妥当か) について考え、見解を述べよ。まわりの人と議論してよいが、自分の言葉で考えをまとめる事。

教科書 1 の記述には規制強化すべきという見解へのバイアスがかかっているように見えるので不用意に誘導されないように注意すること (教科書 1 の著者の見解に同意するならもちろんそれで構わない)。
10 コンプライアンスと規制法令

10.1 前回の課題から

10.1.1 カネミ油訴訟について

<table>
<thead>
<tr>
<th></th>
<th>昼間主</th>
<th>夜間主</th>
</tr>
</thead>
<tbody>
<tr>
<td>国の責任を認めた判決が妥当</td>
<td>44</td>
<td>6</td>
</tr>
<tr>
<td>国の責任を認めない判決が妥当</td>
<td>28</td>
<td>8</td>
</tr>
</tbody>
</table>

10.1.2 国の責任を問うことの根拠

- 他省庁との連携は当然
- 省庁間の情報共有が不十分であることは問題
- 国の対応が早ければ被害を減らすことができた筈
- 早期の立ち入り検査は必要だった
- 農林省係官が食品の安全性を疑わなかったのは過失に相当 (!)
- PCB という異常な物質は国が管理すべき (!)
- 鶏の大量死が放置されていたのはおかしい (!)
- 規制強化により被害が軽減できたのだから責任はある (!)
- 疑わしいなら行動すべき (!; カイワレ大根 (後述) 参照)
- 公務員は管轄外でも行動すべき (!)
- 専門外の事項でも対応すべき (!)
- 農林省担当者が食品安全について調べるのは当然 (!)
- 結果的に事故が起きたのであればそれは怠慢 (!)

10.1.3 国の責任を問わないことの根拠

- 製造物責任法施行前だから仕方ない
- 農林省担当者は職責を果たしている
- 農林省担当者に「全能であること」を要求するのは無茶
- 職業人は職責を大きく超えた行動はできない
- 当時の知識では事故の原因はわからない筈
- 不確かな知識にもとづいて規制するのは不合理
10.1.4 その他の意見

- 規制強化には賛成
- 規制強化で問題が解決するとは限らない、天然物にも毒物・アレルギー物質はある
- 規制強化に伴うコスト増大を考慮すべき

10.1.5 O157 カイワレ事件

1996(平成 8)年 8 月、大腸菌 O157 驟動が起こる。
この原因について菅は「カイワレ大根が原因」と根拠不明の発言を発表、これが風評被害に繋がった。カイワレ大根が売れなくなり、結果、農家や業者の破産・倒産が相次ぎ、自殺者をも出した。菅直人は、健全な一般国民を事実無根の罪で殺害したのである。
事態収拾のため、菅直人は自らカイワレ大根を食べるパフォーマンスをした。
この事件は東京と大阪で業者らから損害賠償請求訴訟を起こされ、いずれも「十分な科学的根拠がない」(意訳)として国の方針を認め、国が敗訴している。それでも菅は裁判に不服の意を示し、裁判官の判断を批判した。典拠: 通信用語の基礎知識 http://www.wdic.org/ の「菅直人」の項 (一部誤字があるがそのまま引用了)

- O157 驟動は、患者数が 6000 人以上に上り、2人の児童が死亡した病原性大腸菌 O157 による重大な食中毒
- 共同通信が配信した大阪高裁判決要旨
 http://www.47news.jp/CH/200402/CN2004021901001195.html

カイワレ訴訟判決要旨
【はじめに】本件は患者数が 6000 人以上に上り、2人の児童が死亡した病原性大腸菌 O157 による重大な食中毒であり、原因究明や予防対策は当時、国民の最大の関心事であった。関係機関と関係者が、限られた人材、物的な手段のもとで原因究明のための調査を行い、疫学調査をもとに仮説を立てて報告書を作成したが、多大の労苦は多とされてよい。国民にとって重要かつ必要な情報を隠さずに、早期に公表するため、厚相が調査結果を公表すること自体は、国民にとって望ましいことである。しかし、本件の調査、報告書、公表のいずれも、問題がないとはいえず、国は要求を不服の訴えを認めた。【原因の調査と推定】本件の集団発症についての調査は、基礎データの信頼性に限界がある。原因食材を大まかな範囲で絞り込み「業者が出荷したカイワレ大根が原因食材」との仮説を立てたものの、原因食材を特定するまでの正確性、信頼性がある調査とは認められず、その後の仮説は、もともとの症例の定義があいまいままであり、喫食調査の仕方にも問題がある。条的検証を必要としないほどの強い証明が存在するとはいえない。結局、原因究明の合理性と原因推定の妥当性については、疑問がないとはいえない。
【中間・最終報告公表の違法性】各報告公表の目的は集団食中毒について食品全般の安全性に対する国民の不安を解消することであり、情報公開それ自体が主な目的だった。公表自体には正当な目的があったと認められる。しかし、食中毒の拡大防止・再発防止が主な目的だったとの国の主張は認められない。「カイワレが原因食材である可能性が否定できない」とした中間報告の結論部分は、問題のない表現である。「特定の生産施設から 7 月 7, 8, 9 日に出荷されたカイワレが最も可能性が高い」とした最終報告の結論部分は、決定的な証拠も現れておらず、カイワレが原因だという事実が真実である確率が高まったというのは早計で、表現は相当でない。中間報告の公表時期は報告が発表された打撃や不利益を思えば緊急性、必要性があったといえ。しかし、
最終報告段階では調査検討は終了し、公表することは説明責任に応えるもので相当だった。旧厚生省は報告書と概要を報道機関に配布し、厚相が記者会見する方法を探った。表現方法や情報の正確性について細心の注意を払う義務があるが、報告書の内容を超えて、特定の生産施設のカイワレが原因材料である可能性が95%原因であることは確定的な事実であるかのような印象を与える結果となったもので相当でない。調査は、その基礎データの信頼性に限界があるなどの問題がある。原因材料を大まかに網羅したものの、特定するまでの正確性、信頼性は認められない。

中間報告は、厚相が記者会見して積極的に公表しなければならない緊急性、必要性を認められず相当性を欠く。最終報告書は調査終了後に作成されたものであり、その時点は資料を公表する時期としては相当だった。しかし、内容は必ずしも標準的な疫学調査の手法にのっとったものであるか疑問があり、「原因が汚染したカイワレが原因材料である」との仮説に矛盾しない事実をとさらに取り上げ、仮説に合理的な疑問を差し挟む事実については、十分な科学的根拠のない説明により追加する処理をしている。最終報告はカイワレが原因材料であると解明されたかのような誤解を招きかねない不十分な内容で、相当でない。さらに、最終報告書の公表の際に同席した専門家が、特定の生産施設 (原因を指すことは容易に判明する) で生産されたカイワレが、原因材料である可能性は95%ほど断定した判断を示したことは、相当でない。したがって最終報告の公表も相当性を欠くといわざるを得ない。以上によれば各報告の公表は、違法性の判断基準に照らしてみると、情報公開という正当な目的があったとしても、原告の名誉、信用を害する違法な行為であるといわざるを得ず、これにより生じた原告の損害について、国は原告に対し国家賠償法 119 条 1 項による損害賠償責任がある。

【共同通信】

10.1.6 担当者コメント

- 教科書の記述は、前回の講義で説明した「後知恵バイアス」の典型例、国の責任を問う方向に記述が偏っている
- 法の不適及 (法はその成立以前に発生した事件を裁けない) というのは法的主義の基本、教科書がこの問題に製造物責任法を持ち出しているのは不当
- 個人的にはこの内容で国の責任を問うのは無理があると考えている (正解というわけではない)

10.2 三菱自動車の不祥事

- 1996年: セキュラ事件
- 1997年: 総会屋グループへの利益供与
- 2000年: リコール隠し: ユーザからのクレーム情報の隠蔽
- 2004年: 過去の欠陥隠し: 大型トレーラー事故
- 刑事、民事訴訟とも三菱自動車側が敗北

以下の出典: 失敗知識データベース http://www.sozogaku.com/fkd/

10.2.1 三菱自動車のリコール隠し: 事例概要

- 2002年1月10日、トレーラーのタイヤハブ破損事故 (主婦が死亡、その長男と次男も軽いけが)
- 三菱自動車製大型車ハブ破損事故は1992年以降に計57件 (うち51件で車輪脱落)
三菱自動車はユーザーの整備不良を主張、同社から分社化した三菱ふそうトラック・バスは2004年3月製造者責任を認め国土交通省にリコールを届け出

2004年4月9日、関係者5名が道路運送車両法違反（虚偽報告）容疑で、関係者2名が業務上過失致死傷容疑で逮捕、三菱自動車も道路運送車両法（虚偽報告）容疑で刑事告発

<table>
<thead>
<tr>
<th>年</th>
<th>月</th>
<th>事件内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992年6月21日</td>
<td>東京都内で冷凍車の左前輪脱落事故</td>
<td></td>
</tr>
<tr>
<td>1999年6月</td>
<td>広島県内の高速道路でバスの右前輪脱落事故</td>
<td></td>
</tr>
<tr>
<td>1999年7月〜8月</td>
<td>バスの車輪脱落で個別対策会議、旧運輸省に整備不良と報告することを決定</td>
<td></td>
</tr>
<tr>
<td>2002年1月10日</td>
<td>横浜市瀬谷区で大型トレーラーの左前輪脱落事故（上記事故）、三菱自動車は大型車のハブの無償点検を発表、横浜の事故の原因は整備不良と結論、リコールせず</td>
<td></td>
</tr>
<tr>
<td>2002年1月17日</td>
<td>三菱自動車社内にマルT（通称）対策本部会議が（以下マルT）発足し、再発防止策を検討</td>
<td></td>
</tr>
<tr>
<td>2002年2月1日</td>
<td>マルT、ハブ破損の原因を摩耗し交換基準を提示、国土交通省に報告</td>
<td></td>
</tr>
<tr>
<td>2002年2月</td>
<td>三菱自動車社内にフロントハブ強度検証ワーキンググループ（以下WG）が発足し、ハブ強度を検討</td>
<td></td>
</tr>
<tr>
<td>2002年3月</td>
<td>WGに摩耗量にかかわらず約3割もき裂が発生するとのサンプル調査の結果が示される</td>
<td></td>
</tr>
<tr>
<td>2002年6月</td>
<td>国土交通省、三菱自動車トラック・バス開発本部を特別監査</td>
<td></td>
</tr>
<tr>
<td>2002年7月</td>
<td>WG、整備不良による摩耗がハブ破損につながると結論、リコール回避</td>
<td></td>
</tr>
<tr>
<td>2003年1月</td>
<td>三菱自動車のトラック・バス部門が三菱ふそうトラック・バスとして分社化、社長にダイムラークライスラー社のビルフリート・ポート氏が就任</td>
<td></td>
</tr>
<tr>
<td>2003年3月19日</td>
<td>三菱自動車の若手技術者が、ハブ破損と整備不良による摩耗との関連は少なく、重要部品の耐久強度試験の重要性を指摘するリポートを社内研修会で発表</td>
<td></td>
</tr>
<tr>
<td>2003年10月24日</td>
<td>横浜の事故に関し、神奈川県警が業務上過失死傷容疑で三菱自動車の本社などを家宅捜査、2004年1月にも再捜査</td>
<td></td>
</tr>
<tr>
<td>2004年3月11日</td>
<td>三菱ふそうトラック・バス、ハブの製造者責任を認め、国土交通省にリコールを届け出</td>
<td></td>
</tr>
<tr>
<td>2004年5月6日</td>
<td>横浜の事故で神奈川県警は道路運送車両法違反（虚偽報告）容疑で元三菱自動車役員らの5人と、業務上過失致死傷容疑で元三菱自動車管理職らの2人を逮捕。国土交通省は道路運送車両法（虚偽報告）容疑で三菱自動車を刑事告発</td>
<td></td>
</tr>
<tr>
<td>2004年5月21日</td>
<td>三菱自動車が経営再建策を発表、大幅な組織改編、企業倫理委員会設置、しかし立て直し失敗</td>
<td></td>
</tr>
<tr>
<td>2005年1月28日</td>
<td>三菱自動車は新たな経営再建策を発表、三菱重産業、三菱商事、東京三菱銀行の三菱グループ3社が計2,700億円の増資</td>
<td></td>
</tr>
</tbody>
</table>

国土交通省、2005年度からリコール調査官制度を創設することを決定

10.2.2 三菱自動車のクラッシュ時：概要

2004年5月20日、三菱ふそうトラック・バスのビルフリート・ポート社長が記者会見、三菱自動車製トラックのクラッシュ系統に欠陥があることを8年前に社内で把握しながら、十分な対策をとらず、死亡事故を引き起こした可能性があることを認めた（欠陥の把握後しばらくは、秘密裏に修理する違法なヤミ修理を続けたがそれも途中で止めていたという）

事実関係については社員から会社側に告発

欠陥が明らかになったのは1983年から1996年までに生産された約17万台の大型トラック「ザ・グレート」
その時点までに三菱ふそうトラック・バスと三菱自動車に報告された不具合は把握できたものだけで約70件である。

1990年6月 最初のクラッシュシステムの破損事故が発生
1994年 神奈川県内で人身事故
1996年3月～5月 社内のリコール検討会でクラッシュシステムの欠陥を把握、放置すれば8～9年で事故40件前後続発と予想したが、リコールせずヤミ改修で対応することを決定
1998年 名古屋市内で人身事故
2000年7月 三菱自動車が組織的にクレーム情報を二重管理しリコール隠しをしていたことが発覚、約60万台のリコールを運輸省へ届け出
2000年9月 運輸省が道路運送車両法違反容疑で三菱自動車を警視庁に告発
2001年5月 東京簡易裁判所が三菱自動車の副社長ら4人に罰金刑の略式命令
2002年10月 山口県内でクラッシュシステムの欠陥のため冷蔵車が制御不能に陥り運転手が死亡
2004年5月 三菱ふそうトラック・バスがクラッシュシステムの欠陥を公表し国土交通省にリコールを届け出
2004年6月10日 山口県内の死亡事故で神奈川県警と山口県警が元三菱自動車社長ら6人を逮捕
2004年6月15日 三菱ふそうトラック・バスの工場を統括する生産本部が取得していた品質管理システムの国際規格ISO9001の認証がクラッシュシステムの欠陥隠しを理由に停止
2004年6月18日 国土交通省が1994年5月以降に届け出があったリコールのうち人身事故、物損事故、車両火災につながった37件を調査、三菱ふそうトラック・バスと三菱自動車の合計が7割近くを占めることが判明
2004年10月 山口県内の死亡事故の初公判(横浜地裁)
2004年12月 三菱ふそうトラック・バスがリコール隠し問題の再発防止策を提出、国土交通省は内容が不十分として追加報告を指示
2005年1月 三菱ふそうトラック・バスが認証を受けていない新型車2,800台を生産し、うち2,000台にリコールに該当する欠陥があったことが判明
2005年2月2日 三菱ふそうトラック・バスは新たに41件の欠陥を公表し調査終了を宣言

10.3 コンプライアンス

10.3.1 Compliance という単語

- the practice of obeying rules or requests made by people in authority (Oxford Advanced Learner’s Dictionary, 6/e)
- (要求, 命令などへの) 応諾, 服従, 追従, 遵守, 準拠, 承諾 (リーダーズ英和辞典 第2版)
- 技術者の倫理における compliance はビジネス倫理の用語から派生したもの、日常言語とは若干意味が異なる

10.3.2 コンプライアンスの意味

教科書の記述は不明瞭なので、応用倫理学辞典 (丸善, 2008) に準拠して説明

- 組織が法令、企業倫理などの企業社会における健全な規範と調和しながら適正かつ健全な事業活動をしていくための組織としての仕組みの総称
- 法的規制の実効性との関連を重視

121
組織の自主的な活動

10.4 行政法

- 規制法令: 行政（監督省庁）の問題
- 行政に関する法規: 行政法
- 以下、行政法の概要について講義、典拠は以下の2冊:
 高田（編著）、新版行政法、有斐閣、2009
 長野、川崎: 行政法がわかった、改訂第7版、法学書院、2009

10.4.1 行政法とは

- 法治主義に基づき行政を統治する法
- 民法、刑法などといった統一的な成文法典を欠く
- 以下の3領域から成る:
 - 行政組織法: 行政を担当する国・公共団体の組織を定める法
 - 行政作用法: 国・公共団体の対外的な行政活動を授権し義務する法
 - 行政権に対する権利・義務を定める領域、とくに行政救済法

10.4.2 行政とは

- 法の下における司法以外の執行作用
- 法律に適合しなければならず、既存の法律に抵触してはならない
- 法律の授権によってその効力をなしえ得る
 - 組織法的授権: 法律によって行政機関を構成し、それに権限を付与
 - 作用法的授権:
 * 行政の立法行為の授権
 * 個別行為の授権

10.4.3 行政主体

- 行政を担当する国や地方公共団体などの団体
- 国、地方公共団体、特殊法人、独立行政法人、公共組合など
- 国以外の行政主体を総称して公共団体と呼ぶことがある
- 国、地方公共団体: これは説明不要
独立行政法人: 国民生活及び社会経済の安定等の公共上の見地から確実に実施されることが必要な事務及び事業であって，国が自ら主体となって直接に実施する必要のないもののうち，民間の主体にゆだねた場合には必ずしも実施されないが，これをやるためのものがあるもの又は一の主体に独占して行われることが必要であるものを効率的かつ効果的に行わせることを目的として，この法律及び個別法の定めるところにより設立される法人（独立行政法人通則法第2条）

国立大学法人: 国立大学を設置することを目的として，この法律の定めるところにより設立される法人（国立大学法人法第2条）

特殊法人: 行政実務上，法律により直接に設置される法人または他の法律により特別の設立行為をもって設立すべきものとされる法人（独立行政法人を除く）であって，その新設・廃止等について総務省の審査が及ぶもの（法律上明確な定義はない）

認可法人: 民間等の関係者が任意に設立し，主務大臣の認可を受けたものであって，その設置数が特別の法律により限定されるもの（法律上明確な定義はない）

公共組合: 特定の公共的な事務事業を行うために設立される公の社団法人であって，事業の直接の利益関係者が限られており，関係者（組合員）の自治活動で事業を行うことが合理的であるために設けられるもの（健康保険組合など）

10.4.4 行政機関

行政主体のために行政事務を担当する地位

権限を基準とすると以下のように分類される：
行政庁，補助機関，参与機関，谘問機関，監査機関，執行機関

行政庁: 行政主体の意思または判断を決定し，これを私人に表示する権限を持つ機関，各省の大臣など

補助機関: 行政庁の権限行使を補助する機関，行政庁以外のほとんどの行政組織の構成員

参与機関: 行政庁の意思または判断の決定に参与する機関，電波監理審議会など

諮問機関: 行政庁の諮問に対して，答申し意見を述べる機関，国民生活審議会など

監査機関: 他の行政機関の事務処理を監査する機関，会計検査院など

執行機関: 行政の相手方に対して具体的に実力をもって執行することを任務とする行政機関，警察官など

10.4.5 行政組織

国の行政組織: 内閣，会計検査院，内閣府，総務省，法務省，外務省，財務省，文部科学省，厚生労働省，農林水産省，経済産業省，国土交通省，環境省，防衛省

地方公共団体:
- 普通地方自治体: 都道府県，市町村
- 特別地方公共団体: 特別区（東京都23区），地方公共団体の組合，財産区（山林，墓地など）
- 地方開発事業団

123
10.4.6 行政作用

・行政機関が行う活動を総称して行政作用という

・以下のよう区分類される：行政立法，行政計画，行政行為，行政指導，行政命令，行政上の強制執行，行政罰，即時強制，行政調査

・行政手続法 (1993 年) などによって統制されている

・行政作用の効力を争うには：行政不服審査法などによる不服申し立て，行政事件訴訟法による抗告訴訟

・網羅的な説明はせず，技術者にかかわりの深いもののみ抜粋

行政行為

・行政庁が法に基づき優越的な意思の発動または公権力の行使として人民に対し具体的事実に関し法的規制をなす行為

・一方的に命令し，確定し，規律する行為

・下命（禁止，許可，免除，特許（および剥奪行為），許可，代理，確認（河川区域の確定など），公証（各種証明書など），通知，受理

・裁量行為（行政府の側に判断・選択の余地があるもの）と臓束行為（厳格に法令に拘束されるもの）の2種類がある

行政指導

・行政機関がその任務又は所掌事務の範囲内において一定の行政目的を実現するため特定の者に一定の作為又は不作為を求める指導，勧告，助言その他の行為であって処分に該当しないもの（処分の定義に
は諸説ある）

・規制的行政指導，助成的行政指導，調整的行政指導に分類される

・行政手続法に基づくものと基づかないものがある

・形式的には行政機関が国民の自発的な協力を求めて行う非権力的な行政活動なのだが，実用上は問題あり

・行政手続法に相手方が行政指導に従わなかったことを理由として不利益な取り扱いをしてはならない
ことが認められている

行政調査

・行政作用を公正に行うための資料・情報を得るために行政権によってなされる調査活動，関係者への質問，立入検査など

・あらかじめ義務を命じておかず抜き打ち的におこなわれる

・強制力のあるものは法律の根拠が必要，裁判官の許可状が必要な場合もある

124
10.4.7 行政作用の事後的統制

- 行政作用による私人的利害・利益の侵害等に対してなされる原則として事後的な救済制度、以下の２種に大別される:
 - 事務的行政的統制: 行政上の苦情処理、不服申立て、国家賠償・結果責任など
 - 司法的統制: 行政訴訟、民事訴訟

- 苦情処理窓口: 総務省、行政相談委員、法務省人権局・人権擁護委員、地方公共団体の機関

- オンブズマン制度: 行政に関する苦情処理をおこなう専門機関

- 行政争訟: 行政法関連において生じた紛争行政機関が裁断すること、不服申立て、行政審判、当事者争訟
 - 不服申立て: 行政庁の処分その他公権力の行使に当たる行為に関して不服のある者が行政機関に対して不服申立てを行い、その違法・不当を審査させて、行政庁の違法・不当な行為の是正や排除を求める手続
 - 当事者争訟: 対等当事者間の法関係に係る行政機関による紛争裁断
 - 行政審判: 一般の行政機関の系統から多少とも独立性を有する合議制の行政機関が準司法的手続に従って行政上の法律関係を決定する作用

国家補償

- 国や公共団体がその活動により直接又は間接に個人にこうむらせた損失を補填すること、以下の３種類
 - 国家賠償: 違法な行政活動による損害を国や公共団体が賠償
 - 損失補償: 違法な公権力の行使によって発生した財産上の犠牲を全体的な負担公平の観点から財産的に補償
 - 結果責任にもとづく国家補償: 上記２種では救済できない損失を補填

10.5 CSR

- Corporate Social Responsibility (企業の社会的責任) の略

- 企業価値を高めるための取り組み

- 以下の記述の典拠: 佐久間、田中 (編著), 現代 CSR 経営要論, 創成社, 2011
 加藤 (編集代表), 応用倫理学事典, 丸善, 2008

10.5.1 CSR の背景

- 企業は顧客の創造を通じて利益を創出する: 様々なステークホルダー (利害関係者) への配慮が必要

- 株主利益の追及のみでは不十分: 一般大衆からグッドウィル (好意的なイメージ) を獲得することが必要

- CSR, コーポレート・ガバナンス, 企業倫理, 環境経営は相互に関連した概念
経済産業省による CSR の定義

今日経済・社会の重要な構成要素となった企業が、自ら確立した経営理念に基づいて、企業を取り巻くステークホルダーとの間の積極的な交流を通じて、企業の実施に努め、またその成果の拡大を図ることにより、企業の持続的発展をより確かなものとするとともに、社会の健全な発展に寄与することを規定する概念であるが、同時に、単なる理念にとどまらず、これを実現するための組織作りを含めた活動の実践、ステークホルダーとのコミュニケーション等の企業行動

欧州委員会による CSR の定義

企業が自発的にステークホルダーと関わりあう中で、社会的・環境的関心事項を経営戦略、経営活動の中核に取り込むこと

10.5.2 類似概念との違い

- コーポレート・ガバナンス: 経営者に対する監督・監視を指向、コンプライアンスが基本
- 企業倫理: 経営者がそのあり方を管理する、コンプライアンスが基本
- CSR はコンプライアンスを超える社会貢献を指向
- 環境経営に関する見方はいろいろ、グッドウィル、レビュー・リピューテーション（評判）の獲得なども視野

10.5.3 CRS とは

- 企業・経営者によって積極的に実施される
- 事業活動に貢献することを目的とした活動で
- 企業内外のステークホルダーとの関係管理を対象としている

10.5.4 企業の社会貢献活動

- 寄付、従業員のボランティア活動、マッチング・ギフト (従業員の寄付に企業が上乗せをするしくみ)
 表彰制度、研修制度
- メセナ活動 (芸術・文化を対象とした社会貢献活動)
 企業メセナ評議会のページ http://www.mecenat.or.jp/ なども参照

10.5.5 日本のコーポレート・ガバナンス

- 1990 年頃までの日本
 - 主流である監査役設置会社とよばれる形態について説明
 - 株主総会、取締役会、監査役、代表取締役などの機能
 - 意思決定と業務遂行が分離されておらず、監査は機能不全
- 株主総会:多数の会社の株主総会が一定機関に集中、開催機関が短い、非民主的運営などの問題、これらは改善傾向

126
・取締役会: 業務執行と監査の非分離, 取締役会内部における序列形成, 社外取締役の率が低いこと, 取締役会の構成員が多すぎるとき, といった問題, 執行役員制の導入で改善をはかる企業も

・外部監査: 機関投資家, 金融庁, 証券取引等監視委員会, 監査法人

10.5.6 SRI

・Social Responsibility Investment (社会的責任投資) の略
・経済性だけではなく社会性も考慮した投資, 倫理投資ともいう
・投資に随伴して投資関係者に及ぼす影響力 (外部効果) が積極的に用いられる
・経済的見返りだけでなく, 経済的価値に換算困難な見返り, 社会的見返りも考慮される
・SRI の手法:
 – スクリーニング: 投資先の選定, 好ましくない事業をおこなう企業を投資先から外す (ネガティブ・スクリーニング), あるいは好ましい事業をおこなう企業に積極的に投資をおこなう (ポジティブ・スクリーニング)
 – シェアホルダー・エンゲージメント: 対象とする企業の株式を取得し, 株主としての立場で株主提案や取締役との面談等を行うことで企業の事業活動に影響を与えようとする
 – ソーシャル・インベストング: コミュニティの再開発に取り組む住民活動, 社会的企業, または該当する事業に融資する金融機関に投資する

10.5.7 企業倫理

・企業の倫理規定: 企業の倫理規定, 企業倫理規定, 企業行動基準, 企業行動指針, 倫理行為規範, ビジネス行動規範, ビジネス・コンダクト・ガイド などといった名称が用いられる

・USA では大企業の企業行動憲章の制定率は 1960 年に 40%, 1979 年に 73%, 1987 年には 85%

・日本では 1991 年には有力企業 218 社の 30%に企業行動憲章
企業不祥事の続発を受け, 企業倫理の確立への要求

・日本の状況:

1991 年 10 月 経団連企業行動憲章発表, 以下たびたび改定
以下の URL に最新版 (本稿執筆時点で 2010 年 9 月 14 日版)
http://www.keidanren.or.jp/japanese/policy/cgcb/charter.html

以下にこれを引用

企業行動憲章

2010年9月14日
（社）日本経済団体連合会

【序文】

127
日本経団連は、かねてより、民主導・自律型の活力ある豊かな経済社会の構築に全力をあげて取り組んできた。そのような社会を実現するためには、企業や個人が高い倫理観をもつとともに、法令遵守を超えた自らの社会的責任を認識し、さまざまな課題の解決に積極的に取り組んでいくことが必要となる。そこで、企業の自主的取り組みを着実かつ積極的に促すべく、1991年の「企業行動憲章」の制定や、1996年の「実行の手引き」の作成、さらには、経済社会の変化を踏まえて、数次にわたる憲章ならびに実行の手引きの見直しを行ってきた。

近年、ISO 26000（社会的責任に関する国際規格）に代表されるように、持続可能な社会の発展に向けて、あらゆる組織が自らの社会的責任（S R: Social Responsibility）を認識し、その責任を果たすべきであるとの考え方が国際的に広まっている。とりわけ企業は、所得や雇用の創出など、経済社会の発展に欠かせない存在であるとともに、社会や環境に与える影響が大きいことを認識し、「企業の社会的責任 (CSR: Corporate Social Responsibility)」を率先して果たす必要がある。

具体的には、企業は、これまで以上に消費者の安全確保や環境に配慮した活動に取り組むなど、株主・投資家、消費者、取引先、従業員、地域社会をはじめとする企業を取り巻く幅広いステークホルダーとの対話を通じて、その期待に応え、信頼を得るよう努めるべきである。また、経営グループとしての取り組みのみならず、サプライチェーン全体に社会的責任を踏まえた行動を促すことが必要である。さらには、人権問題や貧困問題への関心の高まりを受けて、グローバルな視野をもってこれらの課題に対応することが重要である。

そこで、今般、「企業の社会的責任」を取り巻く最近の状況変化を踏まえ、会員企業の自主的取り組みをさらに推進するため、企業行動憲章を改定した。会員企業は、倫理的側面に十分配慮しつつ、優れた商品・サービスを創出することで、引き続き社会の発展に貢献する。また、企業と社会の発展が密接に関係していることを再認識したうえで、経済、環境、社会の側面を総合的に捉えて事業活動を展開し、持続可能な社会の創造に資する。そのため、会員企業は、次に定める企業行動憲章の精神を尊重し、自主的に実践していくことを申し合わせる。

企業行動憲章

- 社会の信頼と共感を得るために-

（社）日本経済団体連合会
1991年9月14日「経団連企業行動憲章」制定
1996年12月17日同憲章改定
2002年10月15日「企業行動憲章」へ改定
2004年5月18日同憲章改定
2010年9月14日同憲章改定

企業は、公正な競争を通じて付加価値を創出し、雇用を生み出すなど経済社会の発展を担うとともに、広く社会にとって有用な存在でなければならない。そのため企業は、次の10原則に基づき、国の内外において、人権を尊重し、関係法令、国際ルールおよびその精神を遵守しつつ、持続可能な社会の創造に向けて、高い倫理観をもって社会的責任を果たしていく。

1. 社会的に有用で安全な商品・サービスを開発、提供し、消費者・顧客の満足と信頼を獲得する。
2. 公正、透明、自由な競争ならびに適正な取引を行う。また、政治、行政との健全かつ正常な関係を保つ。
3. 株主はもとより、広く社会とのコミュニケーションを行い、企業情報を積極的かつ公正に開示する。また、個人情報・顧客情報もはじめとする各種情報の保護・管理を徹底する。

128
4. 従業員の多様性、人格、個性を尊重するとともに、安全で働きやすい環境を確保し、ゆとりと豊かさを実現する。

5. 環境問題への取り組みは人類共通の課題であり、企業の存在と活動に必須の要件として、主体的に行動する。

6. 「良き企業市民」として、積極的に社会貢献活動を行う。

7. 市民社会の秩序や安全に脅威を与える反社会的勢力および団体とは断固として対決し、関係を遮断し徹底する。

8. 事業活動のグローバル化に対応し、各国・地域の法律の遵守、人権を含む各種の国際規範の尊重はもとより、文化や習慣、ステークホルダーの関心に配慮した経営を行い、当該国・地域の経済社会の発展に貢献する。

9. 経営トップは、本憲章の精神の実現が自らの役割であることを認識し、率先垂範の上、社会からもグループ企業がその活動を図るとともに、取引先にも促す。また、社内外の声を常時把握し、実効ある社内体制を確立する。

10. 本憲章に反するような事態が発生したときには、経営トップ自らが問題解決にあたる姿勢を内外に明らかにし、原因究明、再発防止に努める。また、社会への迅速かつ的確な情報の公開と説明責任を遂行し、権限と責任を明確にした上、自らを含めて厳正な処分を行う。

以上

10.5.8 環境経営

- 環境サステナビリティ: 自然環境を人類の生活の基盤であると認識し、環境、経営、倫理の3視点を調和させ、環境保全に当たることを可能にするもの

- 環境経営: 環境サステナビリティを指向する経営

- 企業の環境対応は、没対応→受動的対応→能動的対応と変化環境会計という手法によって実践される

- 環境会計: 企業等が、持続可能な発展を目指して、社会との良好な関係を保ちつつ、環境保全への取組を効率的かつ効果的に推進していくことを目的として、事業活動における環境保全のためのコストとその活動により得られた効果を認識し、可能な限り定量的(貨幣単位又は物量単位)に測定し伝達する仕組みのこと(環境会計ガイドライン2005年版、環境省)

- 温室効果ガス会計は環境会計の1手法

129
10.6 課題

配付資料に NPO 法人データベース NPO ヒロバ
http://www.npo-hiroba.or.jp/company/index.html に記載されている企業の社会貢献活動を示す (電気系と関係のある企業のみ抜き出して 50 音順に並べてある)。企業をひとつ選んで (どの企業を選んだかを解答用紙に書くこと) その活動内容を読み, 社会貢献活動が十分に認知されているか, 企業価値を高める上で役立っているかについて見解を述べよ. また, 企業の社会貢献活動のあるべき姿について意見を述べよ (そんなものは不要という考え方もありうる).

なお, 企業の社会貢献活動には企業価値を高めるという目的があり, 就職活動で「志望動機は社会奉仕」などと言うと人事担当者に失笑されるので注意すること.
11 説明責任

11.1 前回の課題から (社会貢献)

11.1.1 昼間主

<table>
<thead>
<tr>
<th>社名</th>
<th>回答数</th>
<th>認知度</th>
<th>企業価値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソニー</td>
<td>16</td>
<td>4 8</td>
<td>10 0</td>
</tr>
<tr>
<td>日産</td>
<td>11</td>
<td>5 5</td>
<td>5 2</td>
</tr>
<tr>
<td>トヨタ</td>
<td>10</td>
<td>6 4</td>
<td>9 0</td>
</tr>
<tr>
<td>パナソニック</td>
<td>9</td>
<td>4 1</td>
<td>7 0</td>
</tr>
<tr>
<td>日立</td>
<td>8</td>
<td>2 4</td>
<td>7 1</td>
</tr>
<tr>
<td>キャノン</td>
<td>7</td>
<td>0 5</td>
<td>4 0</td>
</tr>
<tr>
<td>デンソー</td>
<td>6</td>
<td>0 2</td>
<td>5 0</td>
</tr>
<tr>
<td>NEC</td>
<td>6</td>
<td>1 5</td>
<td>5 0</td>
</tr>
<tr>
<td>東芝</td>
<td>5</td>
<td>4 1</td>
<td>5 0</td>
</tr>
<tr>
<td>NTT コミュニケーションズ</td>
<td>5</td>
<td>0 3</td>
<td>3 1</td>
</tr>
<tr>
<td>マイクロソフト</td>
<td>3</td>
<td>0 2</td>
<td>2 1</td>
</tr>
</tbody>
</table>

(どちらとも取れる回答がいくつかあったので、集計はやや不正確)

11.1.2 夜間主

<table>
<thead>
<tr>
<th>社名</th>
<th>回答数</th>
<th>認知度</th>
<th>企業価値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソニー</td>
<td>1</td>
<td>0 0</td>
<td>0 1</td>
</tr>
<tr>
<td>日産</td>
<td>1</td>
<td>0 0</td>
<td>0 1</td>
</tr>
<tr>
<td>トヨタ</td>
<td>2</td>
<td>1 1</td>
<td>2 0</td>
</tr>
<tr>
<td>日立</td>
<td>1</td>
<td>0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>キャノン</td>
<td>1</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>デンソー</td>
<td>2</td>
<td>0 1</td>
<td>1 0</td>
</tr>
<tr>
<td>NEC</td>
<td>2</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>東芝</td>
<td>1</td>
<td>0 1</td>
<td>0 0</td>
</tr>
<tr>
<td>NTT コミュニケーションズ</td>
<td>1</td>
<td>0 1</td>
<td>0 0</td>
</tr>
<tr>
<td>マイクロソフト</td>
<td>2</td>
<td>0 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

(どちらとも取れる回答がいくつかあったので、集計はやや不正確)

11.1.3 社会貢献のあるべき姿に関する意見

社会貢献には好意的な評価が多かった。

- 教育重視
- 環境重視
- 子供重視
- 文化活動重視
- 障害者対策重視
• 人材育成重視
• インフラ整備
• 技術・得意分野を生かすべき
• 業態を合わせるべき
• 市民との交流重視
• グローバルに展開すべき
• 十分宣伝すべき
• 目立たない方がよい
• 製品を配るとよいのでは
• 役に立つことならよい
• 企業のノウハウを社会に還元すべき
• 社会と企業の双方の利益を考えるべき
• 利潤が出る活動を
• 生活環境の改善
• 多くの人に対象にすべき
• テーマをきちんと決めるべき
• 直接的な問題解決すべき
• やって当然なのは

11.1.4 社会貢献への否定的意見
• 地域に密着しすぎると不祥事が起きたときが怖い
• 誰にもできることをわざわざやってなくてもよいのは
• 企業名を覚えてもらう程度で十分
• 本業を頑張った方がよい
• アメリカの真似をしなくてもいいのは
• 無駄ではないか (キャノン, マイクロソフト, NEC)
11.1.5 コメント欄から

● 地熱発電にはリスクはないのか？
 - いわゆる自然エネルギーの中では、出力を制御可能で、出力の変動が少ないという点において、比較的まし
 - どこにでも作れるわけではない
 - マグマが移動し、発電できなくなることがある
 - 火山性の有害物質が出るため、遮蔽が必要
 - 地下水の汚染の可能性がある（水源地では問題）
 - 温泉等の枯渇
 - 噴火で致命的被害を受ける可能性

● 社会貢献をしていない企業はあるのか？

 - まともな企業は地域からの孤立を怖れるため、何らかの（地域）社会貢献をはかるのがふつう
 - まともでない企業も存在する：産業廃棄物の不法投棄、詐欺まがいの起業塾など
11.2 説明責任

11.2.1 Accountable の意味

- Obliged to account for one's acts; responsible (Webster’s New World College Dictionary, 4/e, 2000)
- Required or expected to justify actions or decisions (Concise Oxford Dictionary, 11/e, 2008)
- Someone who is accountable is completely responsible for what they do and must be able to give a satisfactory reason for it (Cambridge Advanced Learner’s Dictionary, 2003)

11.2.2 アカウントビリティ

- Accountability: 説明義務, 実施義務 (リーダーズ英和辞典, 第 2 版, 研究社, 1999)
- Accountability に対応する訳語には説明責任と説明義務の 2 種類, 医学の分野では説明義務が着実に発展し, マスメディア等のよく登場するのは説明責任
- google で “説明責任”：約 2,340,000 件, “説明義務”：約 356,000 件 (2011 年 6 月 7 日)
- 原義は会計学の用語 (井之上, 「説明責任」とは何か, PHP 研究所, 2009)
- 加藤 (編集代表), 応用倫理学事典, 丸善, 2008 によれば…
 - アカウントビリティ: 財産管理者の責任の存在を前提として, その責任の成立なら解体に至るプロセスを会計的に説明すること
 - パブリック・アカウントビリティ: 主権者たる国民が政府に対して受託者としての責任を設定したことを前提として, 受託者としての政府が, 受託者責任の設定 (予算編成) から解体 (決算承認) に至る過程を主権者たる国民に対して会計的に明らかにすること
- exBuzzwords(http://www.exbuzzwords.com/)における説明:
 個人や組織が影響を与えた強さを定義する事象や結果に関し, その原因となる意思決定行為 (もしくはそれらを行わなかったこと) によって合理的に説明を行う責任を指す

11.2.3 説明

- 以下の典拠: 長野県弁護士会編, 説明責任 その理論と実務, ぎょうせい, 2005
- 説明: 相手方に対し, 委託等された (準) 法的行為や事実行為に関する情報を与えること
- 法的行為や事務行為には以下の 2 種類:
 - 一義的に確定している
 - 相手方に裁量の余地がある
- 情報の詳しさの程度: 以下の 2 種
 - その法的行為や事務行為の内容, 法的効果, 付随的権利義務関係の情報を提供すればよい場合
 - 上記に加え, 説明を受ける相手方が負うリスクの詳細な説明が必要
11.2.4 義務 vs 責任

- 説明する側と説明を受ける側との意思に基づく法的関係（契約）の場合は、説明することは義務
 - 法的行為や事務行為が一義的に確定している場合は説明は（準）委任契約における本的な義務、
 その内容・事務処理の経過・結果・費用等について説明すれば十分
 - 相手方に裁量の余地がある場合は、説明は（準）委任契約における信義則上の義務
- 信義則の根拠は民法第 1 条 2 項:

 民法
 （明治二十九年四月二十七日法律第八十九号）

 (中略)
 第一章 通則（基本原則）
 第一条 私権は、公共の福祉に適合しなければならない。
 2 権利の行使及び義務の履行は、信義に従い誠実に行わなければならない。
 3 権利の濫用は、これを許さない。
- 信義則によって説明義務が発生するか否かは事情次第、以下の要素から決まる
 - 当事者の力・能力関係、意思・目的・意向、利益・不利益
 - 当該取引の社会性
 - 説明を受ける側の自己決定権
- 自己決定権は憲法第 13 条で保証されていると解釈（生命、自由及び幸福追求の権利）
- 行政の説明責任は情報公開法あるいは条例等で規定された義務、詳細は情報開示のところで説明
- 技術者にとっての説明責任は、契約上の義務のこともあれば、倫理的な要求のこともある
- 説明責任という言葉はマスメディアなどによって定義が曖昧なまま拡大解釈される傾向があるので要注意
- 黒田他 (編), 誇り高い技術者になろう, 名古屋大学出版会, 2004 における技術者の説明責任の説明:
 - 製品や技術に伴うリスクを明らかにする義務
 - 製品や技術に伴うリスク情報を公開する義務
 - 技術者が公衆に対して負う倫理的責任

日本の学会の倫理構図には強制力はないので上記が義務であるという主張は（法的義務の場合を除き）
必ずしも妥当とはいえない

11.2.5 技術者の説明責任の機能と特徴

- 技術者の説明責任の 2 種類のはたらき:
 - 公衆をリスクから守る
 - 公衆の不安を取り除く
- 技術者がリスクに関する最新の情報や知識を持つことが前提
- 説明責任は他の義務（守秘義務など）より優先順位が高いと主張する文献もある（上記黒田他の本）
11.3 Public Relations (PR)

- Mas media and PR work towards the report of the public relations is Public Relations. This PR is often more apparent than the "own PR".
- Public Relations is PR and generally, this is not actually a matter of self-promotion.

Public Relations の意義

- The activity of keeping good relationships between an organization and the people outside it (Cambridge Advanced Learner’s Dictionary, 2003).
- The professional maintenance of a favourable public image by an organization or famous person (Concise Oxford Dictionary, 11/e, 2008).
- Relations with the general public as through publicity; specifically, those functions of a corporation, organization, etc. concerning with attempting to create favourable public opinion for itself (Webster’s New World College Dictionary, 4/e, 2000).
- 緊急活動などで使われる自己 PR という用語は実は意味不明、「自己」と「Public Relations」は繋げられない
- 自分の売り込みに相当する英単語は self promotion
 - The action of promoting or publicizing oneself or one’s abilities, especially in a forceful way (Concise Oxford Dictionary, 11/e, 2008).

以下それら、井之上、パブリックリレーションズ、日本評論社、2006 に準拠して説明

Public Relations の定義:

自由競争が可能な民主国家や地域で、双方向コミュニケーションに基づいて、倫理観と哲学を持ち自己修正能力のある情報発信者が、目標達成のために、公共の利益に沿って社会的、有効的に調和ある行動でグッドウィル（信頼・好意）を醸成しマネジメント・ファクショ～ンとして総合的に調整する継続性のあるリレーションズ活動

- ターゲットはメディア、投資家、政府、従業員、地域社会
- 1807 年に USA で作られた語句であるという説あり、USA で登場、発展
- 日本では...
 - GHQ の占領政策によって導入された
 - 広報・宣伝と同義であるとの誤解が広まり、高度成長期にも誤解されたまま継続
 - 1980 年代中盤意向、徐々に正しく理解が普及
11.3.1 目的別の PR の分類

- マーケティング PR: 製品やサービスの販売促進をサポートすることを目的とした PR 活動
- エコーレート PR: 企業がみずからの哲学や理念をメッセージとして伝えることで企業への好意的なイメージをつくり出すことを目的とした PR 活動

11.3.2 PR に関連した戦略

- レピュテーション・マネジメント: 企業の品格・評判を構成する企業イメージ、製品イメージ、企業収益、株主への配当、CSR、企業の将来性などを総合的に把握・管理する活動
- ブランド・マネジメント: 企業の市場における位置付けに関する情報収集および分析をおこない、顧客との関係性、ブランドのアイデンティティおよび優位性などを総合的に管理する活動

11.3.3 PR 活動のサイクル

- PDCA サイクル (Plan-Do-Check-Act) と類似
- PR 目標設定 → ターゲット設定 → PR 戦略の構築
 → PR プログラムの作成 → 実行
 → 情報の分析・評価 → 最初に戻る

11.4 市場対応

(以下の典拠) 久新, 不祥事を防ぐ市場対応ハンドブック, 唯学書房, 2007

11.4.1 製品に問題が生じたときの企業の対応

- 市場対応はレピュテーション、ブランドイメージを左右する
- 法規だけでは不十分で自主規制が必要
- 告知、リコール、被害者救済などから成る
- 不適切な市場対応に対する社会の反応は苛烈

11.4.2 告知

- 知らされないと消費者が不利益を被る事柄に対し企業が公の形で公衆に知らせること (顧客に直接連絡することは告知ではない)
- 正しい告知を怠った企業は以下の罪に問われる可能性がある
 - 未果の故意: 実害の発生を積極的には希望しないし意図するものではないが、自分の行為により結果として実害が発生してもかまわないという行為者の心理状態
 - 不作為: 放置しておけば公衆に不利益が及ぶ事実を知り、またはその事実を知る立場にあらなら、何らかの手段を講じること
・ 告知の対象は法令違反, 品質事故, 品質問題 (不具合), 事業撤退, 発売延期や市場供給状況, 顧客情報流出なども対象となり得る

・ 正しい告知を怠った企業は以下のリスクを抱える
 - 情報公開体制への信用の失墜
 - コンプライアンスに対する疑念
 - 顧客満足の低下
 - 従業員満足の低下
 - CSR に対する疑念
 - ブランド損傷, レピュテーション低下

・ 告知することにも一定のリスクがある

・ 告知に関する意思決定では以下に留意すべき
 - 事実に基づいて判断すること
 - 正しい対応をすること
 - 迅速に対応すること
 - 関係部署間で十分な連携を取ること

11.4.3 告知文

・ 配付資料に告知文の例:
 - パナソニック: http://panasonic.co.jp/
 - 日立: http://kadenfan.hitachi.co.jp/about/information.html
 - ソニー: http://www.sony.co.jp/SonyInfo/News/ServiceArea/
 - シャープ: http://www.sharp.co.jp/support/announce/index.html

・ パナソニックはトップページに告知文を置き, 積極的; 当該製品の欠陥は重大だったが積極的な対策によってブランド損損を免れた

・ 記載要件:
 - 宛先 (「お客様各位」「該当商品のご愛用者へ」など, 書かないこともある)
 - 標題
 - 日付
 - 社名
 - 本文 (問題とその影響の説明, 被害者救済の方法, 協力依頼, 謝罪, 再発防止策等)
 - 対象機種 (モデル名), 不具合該当商品 (シリアル番号, 製造月日)
 - 該当商品の特定方法 (写真, 図などで)
 - 問合せ先, 連絡先, 問い合わせ可能時間
 - 個人情報保護に関する記載
文章の書き方:
- 文体は「です・ます」調
- 文章は簡潔に、わかりやすく
- 情報提供者を明示する
- 問題の内容篤実、程度、問題の広がりを明確に述べる
- 一般消費者が該当商品を特定できるように書く
- 用語を該当商品の取扱説明書と合わせる
- 記述に誤りがないよう複数の人が複数回チェックする

謝罪のしかた
- 事実を正しく伝える
- 素直に謝る
- 問題解決策を提示する
- 再発防止策を提示する
- 全体として深い印象の文章を書く

11.4.4 告知方法
告知の方法は色々、状況によって使い分ける

- 対面説明: 丁寧で確実だが顧客が補足できていることが条件、告知文とセットで対応し、個別対応との印象を顧客に与えないようにすることが必要
- 新聞: 広汎な読者層を持つので幅広い告知が必要な場合に利用、パソコン・インターネットが無い層にも伝達可能、コストがかかる、若年層は新聞を取っていないこともある、1日限り
- 専門誌 (紙)、雑誌: 趣味性が高い製品に関して有効
- Web ページ: 情報提供の担保、最低限これだけは必要
- 郵便 (ダイレクトメール): 情報到達度が高い、ユーザ登録した顧客に対しては他の手段と並行して実施した方が安全
- 電子メール: 情報到達度が高い、ユーザ登録した顧客に対しては他の手段と並行して実施した方が安全
- 記者会見: いわゆる説明責任を追及される可能性がある場合に有効、準備の負担が大きい、話し方次第では逆効果
- プレスリリース: 投げ込み広報発表文、よく練った内容にできるがどう取り扱われるかはメディア次第
- 店頭ポスター、チラシ: 重大性・緊急性が高い場合に利用、目立つことがメリット、来店しない顧客には効果なし
- テレビ・ラジオ: 広汎な視聴者層を持つので幅広い告知が必要な場合に利用、インパクトはあるが時間が短く顧客の記憶に残らないことも、時間帯によって視聴者層が流動的なので確実性は低い
- 国民生活センター、消費者生活センター: 重大事故、消費者の関心が高い案件についてはこれらの機関への問い合わせが発生する可能性が高いので情報提供しておけば無用な混乱が防げる

139
販売店: 販売責任の観点から重要。販売店に情報がないと混乱する
自社サービス窓口：ショールーム：これらの組織に正確で整合性の取れた情報が保有されており、顧客に整然とした説明がなされないと、信用を損なう

11.4.5 告知基準

- 重大な製品の事故には国への届出義務（消費生活用製品安全法）
- 経済産業省の「事故情報の公表基準について」によると、重大製品事故の情報はただちにプレス発表される（配付資料）
- 重大でない製品の問題については企業の判断
- 消費生活用製品安全法:
 消費生活用製品安全法
 （昭和四十八年六月六日法律第三十一号）
 最終改正：平成二一年六月五日法律第四九号
 第三十五条 消費生活用製品の製造又は輸入の事務を行う者は、その製造又は輸入に係る消費生活用製品について重大製品事故が生じたことを知ったときは、当該消費生活用製品の名称及び型式、事故の内容並びに当該消費生活用製品を製造し、又は輸入した数量及び販売した数量を内閣総理大臣に報告しなければならない。
- 告知が必要な事例は増加傾向、個別対応は困難なので基準・規定あるいはガイドラインが必要
 - 基準・規定: 明確だが提出時にその通りに運用されているか否かが問われる
 - ガイドライン: 基準・規定より柔軟だが位置付けが曖昧になりやすい
- 策定部署、運用開始日、改訳手順、適用範囲を明確に定める
- コンプライアンスは最低ライン、必ずそれを超えるものを
- 告知と市場対応は一体化する
- 告知の要否の判断には当事者である事業部門以外に、市場対応に責任を持つ部門、全社的・第三者的な観点を持つ部門も参加し、近視眼的な判断に陥らないよう配慮する
- 最終決定は社長あるいは担当役員
- 定量的判断（不良件数の見積もり等）を判断の事実材料とし、定性的な判断（法令遵守）を判断の基準とし、さらに判断の妥当性をCSRの観点から検証する、というやり方がある

11.4.6 リコール

- 市場に流出した不適合品に対して市場を通じて技術的な適正化措置を施すこと：回収、返品、返金を含むこともある
- 自動車のリコールには国土交通大臣への届出義務（道路運送車両法）
道路運送車両法
（昭和二十六年六月一日法律第百八十五号）
最終改正：平成二〇年四月三〇日法律第二一号

第六十三条の三 自動車製作者等は、その製作し、又は輸入した同一の型式の一定の範囲の
自動車の構造、装置又は性能が保安基準に適合しなくなるおそれがある状態又は適合して
いない状態にあり、かつ、その原因が設計又は製作の過程にあると認められる場合において、当
該自動車について、保安基準に適合しなくなるおそれなくするため又は保安基準に適合
させるために必要な改善措置を講じようとするときは、あらかじめ、国土交通大臣に次に
掲げる事項を届け出なければならない。
一 保安基準に適合しなくなるおそれがある状態又は適合していない状態にあると認める構
造、装置又は性能の状況及びその原因
二 改善措置の内容
三 前二号に掲げる事項を当該自動車の使用者に周知させるための措置その他の国土交通省
令で定める事項

- 前述のように重大な製品の事故には国への届出義務がある (消費生活用製品安全法) が、これはリコー
ルの届出というわけではない
- いずれにせよ、リコールをおこなう場合は顧客への告知が必要
- リコールのプロセス:

第１段階 問題発生の連絡 → 社内連絡 → 告知判定会議 (方針決定)
第２段階 緊急対策体制構築 → 緊急対策会議 → 告知・改修等の準備 → 告知内容の事前確認
第３段階 告知前の対外アクション → 告知・改修等の実施 → 告知・改修等のフォロー、対策終了 → 事後
評価・再発防止策の検討

11.4.7 被害者救済と法

- 消費者基本法 (次回配付) が文字取り基本
- 被害者救済の際には、法的側面だけでなく、事業推進と顧客へのサービスのバランス、消費者・社会の
反応などを総合的に判断する必要がある
- 被害者救済に直接的に関係するのは製造物責任法および民法

11.4.8 苦情対応

- 品質/表示/販売関連/アフターサービス/顧客対応
- 対応の基本は 誠実・親切・迅速・遅れない
- 職業的なクレーマーには毅然と対処することが必要
- 悪い対応は 横柄・専門用語の羅列・ひたすら「仕様です」・逃げる・早く終わらせようとする・たら
いまわし・過剰にヘリくだった言い回し
- この項の典拠 (久新, 不祥事を防ぐ市場対策ハンドブック, 唯学書房, 2007) の著者はもと SONY の人
- SONY の顧客対応は必ずしも好評ではない
ソニー「相当量のデータ」流出発表前日に事態把握

ソニーのゲーム関連の個人情報流出問題で、子会社のソニー・コンピュータエンタテインメント（ＳＣＥ）が事態を発表する前日、内部で「相当量のデータが持ち出された」と把握していたことが15日、共同通信の情報公開請求に対し経済産業省が開示した文書で明らかになった。発表では「一部の情報が漏えいしていた可能性がある」としか説明していなかった。深刻な情報流出を確認しながら、可能性を公表するだけにとどめ、被害状況を縮小化していた模様だ。
問題発生から公表まで時間がかかったことを来議会で指摘されており、情報公開の不備に批判が広がりそうだ。 2011/06/15 14:02 共同通信】

11.5 情報開示

- 情報開示は行政法の分野に属する概念
- 高田 (編著), 新版行政法, 有斐閣, 2009 に拠拠して説明
- 国内における情報開示の流れ:
 1991年 行政情報公開基準を閣議決定
 1999年 行政機関の保有する情報の公開に関する法律
 2001年 独立行政法人等の保有する情報の公開に関する法律 (未執行)
- 開示対象文書は行政文書全般、原則として開示義務あり
- 不開示情報は法律中で明示:
 - 個人に関する情報: 特定の個人を識別できる情報
 - 法人情報: 法人等の権利、競争上の地位その他正当な利益を害するおそれがある場合、非公開の条件付きで任意に提供された情報
 - 国の安全・外交情報
 - 治安情報
 - 意思形成過程情報: 審議、検討、協議情報

行政機関の保有する情報の公開に関する法律
（平成十一年五月十四日法律第四十二号）
最終改正：平成二十二年七月一日法律第六六号

第一章 総則（第一条・第二条）
第二章 行政文書の開示（第三条－第十七条）
第三章 不服申立て等（第十八条－第二十一条）
第四章 補則（第二十二条－第二十六条）
附則

第一章 総則
（目的）第一条 この法律は、国民主権の理念にのっとり、行政文書の開示を請求する権利につき定めること等により、行政機関の保有する情報の一層の公開を図り、もって政府の有するその諸活動を国民に説明する義務を満足させるようすることとともに、国民的確実な理解と批判の下にある公正で民主的な行政の推進に資することを目的とする。（以下略）
独立行政法人等の保有する情報の公開に関する法律
（平成十三年十二月五日法律第百四十号）

最終改正：平成二一年七月一日法律第七百号
（最終改正までの未施行法令）
平成二十一年七月十日法律第七十六号（未施行）

第一章 総則（第一条・第二条）
第二章 法人文書の開示（第三条・第十七条）
第三章 異議申立て等（第十八条・第二十一条）
第四章 情報提供（第二十二条）
第五章 補則（第二十三条・第二十五条）
附則

第一章 総則
（目的）
第一条 この法律は、国民主権の理念にのっとり、法人文書の開示を請求する権利及び独立行政法人等の諸活動に関する情報の提供につき定めること等により、独立行政法人等の保有する情報の一層の公開を図り、もって独立行政法人等の有するその諸活動を国民に説明する責務が全うされるようにすることを目的とする。 （以下略）

11.6 証明責任
● 立証責任、挙証責任ともいう
● ある主要事実の存否が不明な場合には、その事実に基づく有利な効果が認められないこととなる当事者の一方の不利益のこと（杉光、理系のための法学入門、改訂第6版、法学書院、2008）
● 倫理との関係は薄いのでここではこれ以上の説明はしない
11.7 課題

教科書 [1], 167 ページの討論 1(食品の遺伝子組み換え表示の是非) に関し見解を述べよ。遺伝子組み換え食品自体について論じてもよい。まわりの人と議論してよいが、自分の言葉で考えをまとめること。
12 内部告発・情報法

12.1 前回の課題 (GM 食品) から

12.1.1 昼間主

集計結果

・ 遺伝子組み換え作物に...
 - 肯定的: 19
 - 否定的: 2

・ 遺伝子組み換え作物使用の表示は...
 - 必要: 63
 - 不要: 10

表示肯定側の意見

・ 表示してほしいというのが消費者の希望なら表示は当然
・ 本当に安全なら堂々と表示すべき
・ 表示した上で安全性の宣伝を工夫すべき
・ 公衆の不安除去のために必要
・ 長期的には不確実性があるので表示すべき
・ 食品への信頼を確保するために必要
・ 知る権利・自己決定権という観点から表示は当然
・ アレルギー等の原因究明の手掛りとなるので表示すべき
・ 危機管理・クレーム対策・自己防衛のため表示すべき
・ なんとなく気持ち悪いので表示してほしい
・ 表示した上で自己責任で利用するのがよい
・ 安全性が確立されるまで 100 年くらいかかるのでは
・ 説明責任があるから表示すべき (!)
・ 味が違うので表示すべき (!)

表示否定側の意見

・ 安全性を証明できるなら非表示でよい
・ 印象が悪い・不安を煽るから非表示で
・ 細かく表示し過ぎても見ないのでは
・ 不安解消のコストとしては高くすぎる
・ 自然物にも遺伝子変異はあるのだから一旦表示する必要なし
・ どうせ新技術は必要なので一旦表示する必要なし
その他の意見

- 学者が安全と主張する理由がわからない
- 材料不足なので判断不能
- 表示なんて見ない人が多いと思うのでどうでもいいのではないか
- 国ごとにばらばらの基準で良いのではないか

12.1.2 夜間主

集計結果

- 遺伝子組み変え作物に...
 - 肯定的: 2
 - 否定的: 0
- 遺伝子組み換え作物使用の表示は...
 - 必要: 11
 - 不要: 3

表示肯定側の意見

- 表示してほしいというのが消費者の希望なら表示は当然
- 歴史が浅く社会に抵抗感があるのだから表示すべき
- 公衆の不安除去のために必要
- アレルギーの原因究明のために表示すべき
- レーシックのように数年後に影響が出ることもあり得る
- イメージが悪いから表示は当然では
- 商品の情報を正確に伝えるという意味では表示するのがよい

表示否定側の意見

- 安全なら表示しなくても良いのでは
- 表示を要求することには科学的な根拠はない (!)

その他の意見

- リスクと価格のバランスを取る必要がある
12.2 コメント欄から

- 遺伝子組み換え食品は本当に安全か？アレルギーが出ると聞いたことがあるがどうか？ (関連質問が複数あり)
 - 厚生労働省から「遺伝子組換え食品 Q&A」という文書が出ている (2011年6月1日改訂第9版)
 - バイオインダストリー協会 http://www.jba.or.jp/ により詳細な情報あり
 - これらを典拠にしていくつか事実を述べる
 - 食品としては顕著な問題はないが、環境への影響という観点からは問題がないわけではない
 - 事例等は以下の通り
 * ある企業が大豆の栄養価を高めるためにブラジルナッツのDNAを入れてみたところアレルギーを引き起こすことが分かり開発を中止したという事例あり
 * 英国で遺伝子組換えのジャガイモラットに食べさせたところ免疫力の低下が見られたという報告あり
 * 害虫抵抗性の Bt トウモロコシの花粉で目的とする害虫以外の昆虫が死んだという報告あり
 (Bt 植物: 土壤細菌の殺虫性タンパク質の遺伝子が導入された害虫抵抗性植物)
 * 在来種との交雑による遺伝子汚染、「スーパー雑草」の懸念あり
 * ウイルス抵抗性的遺伝子組換え作物の利用により新たなウイルスシステムが出現する懸念あり
 * 抗生物質耐性遺伝子が土壤細菌に伝達し抗生物質耐性菌が発生する懸念あり
 * 遺伝子導入技術には精度がない (遺伝子が挿入される染色体上の部位やそのコピー数を制御することはできない) ため、一般に十分な安全性の確認が必要

- 遺伝子組み換え作物のシェアは？
 - モンサント (遺伝子組み換え作物販売会社) のページ
 http://www.monsanto.co.jp/data/plantarea.htm によると、2011年度に作付面積で見て緑(82.3%), 大豆(75.4%), トウモロコシ(32.1%), ナタネ(26.5%);
 - これらの4種類で全遺伝子組換え作物作付面積の99.6%を占める

- 遺伝子組換え作物の導入で食料自給率を100%にできるか
 - 農林水産省のページ
 http://www.maff.go.jp/j/zyukyu/zikyu_ritu/012.html によると、2010年度の食料自給率はカロリーベースで39%
 - どのような方法を取るにせよ、短い期間で自給率を100%に近付けるのは極めて困難であると思われる

- ファーストサーバのクラウドデータ消失事故の影響は？
 - 毎日新聞によると顧客は約3万社、影響が出たのは5000社
 - 復元データが別顧客に漏洩したという情報あり
 - おそらく国内では市場最大のデータ消失事故
 - テレビや新聞にほとんど情報が出ないのが不気味

- エアコン設定温度 28度は暑い
・労働安全衛生法事務所衛生基準規則が根拠（第5条3項、「事業者は、空気調和設備を設けている場合は、室の気温が十七度以上二十八度以下及び相対湿度が四十パーセント以上七十パーセント以下になるように努めなければならない。」）
・28度はエアコンにとっては効率が良い
・電気系の学生は省エネルギーには敏感であるべき

● マスコミは自分自身に対する説明責任を果たしていないと思う
⇒ マスコミが極度に自分に甘いというのは同感

● SONYのGK問題（ネットワーク）のような問題は他でもあるのか?
 - ステルスマーケティング的な手法は広告代理店・マスコミの常套手段
 - メーカーが直接「手を汚す」ケースは比較的珍しいように思う
12.3 今回の講義について

- 教科書 1, 12 章の標題は警笛鳴らし (または内部告発) となっているが, 警笛鳴らし (英語の whistleblowing の直訳) という語は日本語としてまったく定着していないので, 講義では専ら内部告発) の語を用いる
- 個人情報保護法をはじめとする情報法についてもこの講義で取り扱う (教科書には記述なし)

12.4 内部告発

12.4.1 内部告発の定義

- 組織内の人間が, その組織の悪事や不正を公にすること (大辞林第 2 版)
- 組織に属する人間が, 内情を明るみに出して世の中に訴えること, accusation from inside (日本語大辞典 第 2 版)
- 法律用語ではなく, いろいろな意味で使われる
- 対応する法律用語は公益通報

12.4.2 whistleblowing の定義

以下の記述は R. Schinzinger and M. W. Martin (西原訳), 工学倫理入門, 丸善, 2002 の記述に手を加えたもの

- 組織内で認められたチャンネル外で, または上司等の意向等に反して, 意図的に伝達される情報

内容 告発する人が組織等にとって重大な道德上の問題であると信じる事項に関連したもの

告発者 従業員, 元従業員あるいはその関係者

情報受取先 その問題に対して行動を起こす地位にいる人または組織

- 実名を出す場合と匿名の場合がある

全米プロフェッショナルエンジニア協会 (該当部分のみ抜粋)

http://www.nspe.org/Ethics/CodeofEthics/index.html

II. Rules of Practice

1. Engineers shall hold paramount the safety, health, and welfare of the public.

a. If engineers' judgment is overruled under circumstances that endanger life or property, they shall notify their employer or client and such other authority as may be appropriate.

f. Engineers having knowledge of any alleged violation of this Code shall report thereon to appropriate professional bodies and, when relevant, also to public authorities, and cooperate with the proper authorities in furnishing such information or assistance as may be required.

USA の Professional Engineer には whistleblowing に関し一定の責務がある

- 以下しばらく R. Schinzinger and M. W. Martin (西原訳), 工学倫理入門, 丸善, 2002 (S&M と略記) に準拠して内部告発について説明するが...

- 日本ではまったく事情が異なるので USA の規範をそのまま適用するのは無理, あくまで参考程度に
内部告発のガイドライン (S& M)

- 以下の条件がすべて満たされるとき、その情報を政府機関等にもたらすことができるが、それに対する適切な反応が得られないときのみ、一般への公表を検討
 - (潜在的) 危険が重大
 - 危険について十分な文書化がなされている
 - 既に直接の上司に報告済みである
 - 直接の上司の対応が不誠実な場合は、既に組織内の通常のチャンネルにより経営組織の最上位者に連絡済み

- 競合他社を利する可能性がある場合はさらに注意が必要

内部告発に関する警告 (S&M, p. 252)

内部告発は、孤独で、報われることのない、危険をはらんだものである。それは挑戦するのが困難で、高くつく報復を見せる。大きなリスクを伴う。さらに、「成功した」としても、すぐに橋が焼け破とされた職場に戻ることを意味するだけで、裁判、経歴、人間関係に対して受けた損害は、金銭的補償では補うことができない。

- 内部告発は非常手段であって、極端な非常事態を除き、告発者は、通常の手段がすべて失敗した場合のみそれを検討すべき

12.4.3 内部告発の前にやるべきこと (S&M)

- 極度の非常事態を除き、最初は組織の通常のチャンネルを通じ、訴えのための規則（文書化されていないものも含む）をよく調べる
- 組織内での意思表示は素早くおこない、ご存知であるという印象を与えないように
- 手際のよい控え目な態度で進め、関係者に配慮し、常に問題そのものに焦点を当て、個人攻撃を避ける
- 可能な限り上司とコミュニケーションを取る
- 観察と要求は正確におこない、公式な記録を残す
- 信頼できる同僚の助言を求める、孤立を避ける
- (学会の倫理委員会に相談、弁護士に相談... 日本には合わない)

12.4.4 国内の状況

- 内部告発には伝統的には強い否定的意図、チクルという言葉の語感にそれが現れている
- 最近は増加傾向
- 日本では解雇権の濫用を理由として内部告発者を救済した例がある (富里病院医師解雇事件、教科書1, p.171～179)
- 今は公益通報者保護法によって内部告発者の救済をはかるのが一般的、公益通報は内部告発という語句の持つ否定的なイメージを払拭するために導入された語句
以下しばらく 角田、小西編、内部告発と公益通報者保護法、法律文化社、2008 に準拠

従来から公益のために通報する行為は正当な行為にあたるとして通報を理由とする解雇を無効とする判例が形成されてきた経緯

どのような内容の通報をどこに通報すれば通報者を解雇等の不利益取扱いから保護されるかが判例法理だけでは不明瞭、公益通報者保護法制定の契機に

公益通報者保護法は 2006 年 4 月 1 日施行（配付資料）

同法で定める内部告発の手続きは踏まない告発が繰り返され、同法は有効に機能しているとは言い難い

12.4.5 公益通報者保護法

公益通報者保護法
（平成十六年六月十八日法律第百二十二号）
最終改正：平成一九年一二月五日法律第一二八号
（目的）
第一条 この法律は、公益通報をしたことを理由とする公益通報者の解雇の無効等並びに公益通報に関し事業者及び行政機関がとるべき措置を定めることにより、公益通報者の保護を図るとともに、国民の生命、身体、財産その他の利益の保護にかかわる法令の規定の遵守を図り、もって国民生活の安定及び社会経済の健全な発展に資することを目的とする。
（定義）
第二条 この法律において「公益通報」とは、労働者が、不正の利益を得る目的、他人に損害を加える目的その他の不正の目的でなく、その労務提供先又は当該労務提供先の事業に従事する場合におけるその役員、従業員、代理人その他の者について通報対象事実が生じ、又はまさに生じようとしている旨を、当該労務提供先若しくは当該労務提供先があらかじめ定めた者、当該通報対象事実について処分若しくは勧告等をする権限を有する行政機関又はその者に対し当該通報対象事実を通報することがその発生若しくはこれによる被害の拡大を防止するために必要であると認められる者に通報することをいう。
（原文における括弧付き注解は略した（以下しばしば同様の措置を取る））

（中略）

３ この法律において「通報対象事実」とは、次のいずれかの事実をいう。
　一 個人の生命又は身体の保護、消費者の利益の擁護、環境の保全、公正な競争の確保その他の国民の生命、身体、財産その他の利益の保護にかかわる法律として別表に掲げるものの規定する罪の犯罪行為の事実
　二 別表に掲げる法律の規定に基づく処分に違反することが前号に掲げる事実となる場合における当該処分の理由とされている事実

別表（第二条関係）
　一 刑法（明治四十年法律第四十五号）
　二 食品衛生法（昭和二十二年法律第二百三十三号）
　三 金融商品取引法（昭和二十三年法律第二十五号）
　四 農林物資の規格化及び品質表示の適正化に関する法律（昭和二十五年法律第一七五号）
　五 大気汚染防止法（昭和四十三年法律第十一十七号）
　六 廃棄物の処理及び清掃に関する法律（昭和四十五年法律第百三十七号）
七 個人情報の保護に関する法律（平成十五年法律第五十七号）
八 前各号に掲げるもののほか、個人の生命又は身体の保護、消費者の利益の擁護、環境の保全、
公正な競争の確保その他の国民の生命、身体、財産その他の利益の保護にかかわる法律として
政令で定めるもの

(別表: 公益通報者保護法別表第八号の法律を定める政令（平成十七年四月一日政令第百四十六
号）によりさらに細かく規定)

● 通報先は第２条１項で規定、1) 事業者等内部、2) 行政機関、3) 事業者等外部の３種類、これの順に保護さ
れるための条件が厳しくなる (第３条)

1. 事業者等内部: 通報対象事実があると思えば OK
2. 行政機関: 上記に加え相当の理由が必要
3. 事業者等外部: 上記に加え、解雇や証拠隠滅等の危険、公益通報を妨げる圧力、問題が調査されない
まま放置、個人の生命・身体に危害が及ぶ虞、のいずれかの条件を満たす必要

● 通報者に取引業者が含まれない
● 脱税、違法政治献金が保護対象になっていない
● 外部通報の条件が厳しい

12.4.6 内部告発に関する新旧の問題

● マスコミは信用できるか
 - 坂本弁護士事件における TBS ビデオ問題
 - 尖閣事件に関する内部告発を CNN が隠蔽

● ネットメディアへの直接暴露をどうするか
 - Youtube への投稿 (尖閣事件のビデオのような)
 - ブログ、ツイッター、２ちゃんねる等
 - Wikileaks

● 公益通報者保護法は消費者庁 http://www.caa.go.jp の管轄

● Web サイトへの掲載については上記ページ Q&A に公益通報とならないという見解が述べられている

● 公益通報の件数や、通報の妥当性に関するデータは一切なし、マスコミ等で内部告発がもてはやされる
のは実際に問題があった場合なのだ...

担当者見解

● 公益通報者保護法はアド法である上に現状と合っておらず、使いづらい

● 内部告発は告発する側とされる側の双方にダメージ、内部告発が発生しにくいような仕組み作りが望
ましい; 内部告発対策は企業にとって重要な危機管理

● CSR、企業倫理等を進めれば内部告発が必要な事象は減る筈

● 密告を忌避する倫理は健全、公益通報 (内部告発) の推奨はモラルハザードになるのでは

● それでも (不幸にして) 戦わなければならないことはありうる

152
12.5 個人情報の保護に関する法律

個人情報の保護に関する法律
（平成十五年五月三十日法律第五十七号）

最終改正：平成二一年六月五日法律第四九号

（目次略）

第一章 総則
（目的）
第一条 この法律は、高度情報通信社会の進展に伴い個人情報の利用が著しく拡大していることにかんがみ、個人情報の適正な取扱いに関し、基本理念及び政府による基本方針の作成その他の個人情報の保護に関する施策の基本となる事項を定め、国及び地方公共団体の責務等を明らかにするとともに、個人情報を取り扱う事業者の遵守すべき義務等を定めることにより、個人情報の有用性に配慮しつつ、個人の権利利益を保護することを目的とする。

（定義）
第二条 この法律において「個人情報」とは、生存する個人に関する情報であって、当該情報に含まれる氏名、生年月日その他の記述等により特定の個人を識別することができるものをいう。
（2項以下略）
（基本理念）
第三条 個人情報は、個人の人格尊重の理念の下に慎重に取り扱われるべきものであることかんがみ、その適正な取扱いが図られなければならない。

● 上記が個人情報の定義および個人情報の保護に関する法律の理念

● 個人情報とはプライバシーのことではないので注意（混同が生じる）

12.5.1 プライバシー

● (1) 個人の生活・秘密、私事、(2) 個人の生活・秘密を他人におかされない権利、私事権、（日本語大辞典第2版）

● (1) 私事、私生活、また、秘密、(2) 私生活上の秘密と名誉を第三者におかされない法的権利、（大辞林第2版）

● 私事が内密であること、私人の秘密、（広辞苑第4版）

加藤 (編集代表)，応用倫理学辞典，丸善，2008 によると...

● 私的な事柄に関する本人の決定権（自己決定権）と個人情報を他人に知られない権利（自己情報コントロール権）を併せたもの

● 内実が不明確なまま広く用いられている

● 19世紀末に USA で登場した概念、当初は放っておいてもらう権利、私的な事柄に関する報道に制限を加えるもの

● 日本では法的定義なし、憲法第13条の幸福追求権を挙げ、人格権の一部と見做して保護する判例

● 自己決定権の意義と限界についてはいろいろな議論がある

以下の議論は宮下、個人情報保護の施策-「過剰反応」の解消に向けて、朝向会、2010 に掲載
12.5.2 個人情報保護法の現状

- 個人情報はプライバシーの一部、特定の個人を識別することができる、生存する個人に関する情報
- 自己情報コントロール権については、概念が十分に確立していない。報道の自由との調整、個人情報の取り扱いに関する本人の関与の仕組みが担保されている、という理由で条文には明記されていない
- 同法では個人情報の取り扱いに関する規律と通知・公表、開示、訂正、利用停止等の本人関与の仕組みを規定しているだけ
- 発足当初は内閣府の管轄、今は消費者庁に移管、過渡期にある

12.5.3 事業者等の義務

- 同法第四章 (個人情報取扱事業者の義務等) に規定
- 長い目で見出しの一部のみ抜き出すと、利用目的の特定、利用目的による制限、適正な取得、取得に際しての利用目的の通知等、データ内容の正確性の確保、安全管理措置、従業者の監督、委託先の監督、第三者提供の制限、保有個人データに関する事項の公表等、開示、訂正等、利用停止等、(以下略) といった条がある

第3者利用の制限

(第三者提供の制限)
第二十三条 個人情報取扱事業者は、次に掲げる場合を除くほか、あらかじめ本人の同意を得ないと、個人データを第三者に提供してはならない。
一 法令に基づく場合
二 人の生命、身体又は財産の保護のために必要がある場合であって、本人の同意を得ることが困難であるとき。
三 公衆衛生の向上又は児童の健全な育成の推進のために特に必要がある場合であって、本人の同意を得ることが困難であるとき。
四 国の機関若しくは地方公共団体又はその委託を受けた者が法令の定める事務を遂行することに対して協力する必要がある場合であって、本人の同意を得ることにより当該事務の遂行に支障を及ぼすおそれがあるとき。

(2項以下略)

12.5.4 適用除外

第五条 難則
(適用除外)
第五十条 個人情報取扱事業者のうち次の各号に掲げる者については、その個人情報を取扱う目的の全部又は一部がそれぞれ当該各号に規定する目的であるときは、前章の規定は、適用しない。
一 放送機関、新聞社、通信社その他の報道機関 報道の用に供する目的
二 著述を業として行う者 著述の用に供する目的
三 大学その他の学術研究を目的とする機関若しくは団体又はそれらに属する者 学術研究の用に供する目的
四 宗教団体 宗教活動の用に供する目的
五 政治団体 政治活動の用に供する目的

154
12.5.5 プライバシーマーク制度

- 一般財団法人日本情報経済社会推進協会 http://privacymark.jp/が運営、業界団体の自主規制
- 日本工業規格「JIS Q 15001 個人情報保護マネジメントシステム一要求事項」に適合して、個人情報について適切な保護措置を講ずる体制を整備している事業者等を認定して、その旨を示すプライバシーマークを付与し、事業活動に関してプライバシーマークの使用を認める制度
- 事業所単位で認定
- 相互認証団体は大連ソフトウェア産業協会、韓国情報通信産業協会となっており、お里が知れる
- 有効期間 2 年、付与の費用は、大規模者では 120 万円 (90 万円) 中規模業者では 60 万円 (45 万円)、小規模業者では 30 万円 (22 万円) (括弧内は新規、括弧付きは継続)
- 付与事業者は 2011 年 6 月 17 日現在で 12,134 社、経済産業省のページによると日本の中小企業数は約 4300,000 社、普及率は極めて低い。前述のページにプライバシーマーク付与事業者一覧がある

12.6 特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律

特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律
（平成十三年十一月三十日法律第百三十七号）

（趣旨）
第一条 この法律は、特定電気通信による情報の流通によって権利の侵害があった場合について、特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示を請求する権利につき定めるものとする。

- いわゆるプロバイダ責任制限法 (全文は付付資料)
- 第 3 条において、個人の権利が侵害されたときのプロバイダへの損害賠償に関し、免責の条件が定められている
- 第 4 条で、発信者情報の開示請求に関する条件が定められている
- 詳細は条文を読めばわかるので略

12.7 不正アクセス行為の禁止等に関する法律

不正アクセス行為の禁止等に関する法律
（平成十一年八月十三日法律第百二十八号）
最終改正：平成一号年一二月二二日法律第一五〇号

（目的）
第一条 この法律は、不正アクセス行為を禁止するとともに、これについての制限及びその再発防止のための都道府県公安委員会による援助措置等を定めることにより、電気通信回線を通じて行われる電子計算機に係る犯罪の防止及びアクセス制御機能により実現される電気通信に関する秩序の維持を図り、もって高度情報通信社会の健全な発展に寄与することを目的とする。
12.8 改正刑法

http://www.itmedia.co.jp/enterprise/articles/1106/17/news127.html

ウイルス作成罪を新設 改正刑法が可決・成立
コンピュータウイルスの作成・保管・提供行為などを罪に問う「ウイルス作成罪」の新設を通じて刑法改正案が国会で可決・成立した。7月17日、参議院本会議で与野党の賛成多数により可決、成立した。7月17日に施行される。

現行の法律では、コンピュータウイルスの作成・保管・提供などによる犯罪を直接罪に問うことはできなかった。改正で、ウイルス作成罪を新設し、ウイルスを作成・提供する行為に3年以下の懲役または50万円以下の罰金、取得・保存行為には2年以下の懲役または30万円以下の罰金が科されるようになる。

法務省のQ & Aにより、ウイルス作成・提供罪は(1)正当な理由がないのに、(2)無断で他人のコンピュータにおいて実行させる目的で、ウイルスを作成・提供した場合に成立するとおり、ウイルス対策ソフト開発などの目的でウイルスのプログラムを作成する場合などは該当しないとしている。

また同罪は故意犯であり、プログラミングの過程で誤ってバグを発生させても犯罪にはならないとしている。

またウイルス作成罪は「無断で他のコンピュータにおいて実行させる目的で」保管した場合に成立するものであり、ウイルスをメールなどで送信した場合、ユーザーは該当しないという見解だ。

サイバー犯罪の抑制効果を期待される一方で、ネットでは「ウイルスを作成していないか調べるため、一般人のPCが警察などに監視されるのでは」という懸念がなされ、これに対し法務省は「PCの差し押さえや通信履歴の入手には、これまで通り裁判所の手数を使い、監視を可能とするなどの特別な捜査手法が導入されるわけではない」としている。

可決された法案の正式名称は「情報処理の高度化等に対処するための刑法等の一部を改正する法律案」。“サイバー刑法”とも呼ばれる。

法務省のページhttp://www.moj.go.jp/content/000072565.htmに全文、電子政府の総合窓口には本稿執筆時点(2011年6月19日)では出ていない。
12.9 電気通信事業法

電気通信事業法
（昭和五十九年十二月二十五日法律第八十六号）

最終改正：平成二二年一二月三日法律第六五号
（最終改正までの未施行法令）
平成二二年十二月三日法律第六十五号（一部未施行）

第一章 総則
（目的）
第一条 この法律は、電気通信事業の公共性にかんがみ、その運営を適正かつ合理的なものとす
るとともに、その公正な競争を促進することにより、電気通信役務の円滑な提供を確保すると
ともにその利用者の利益を保護し、もって電気通信の健全な発達及び国民の利便の確保を図り、
公共の福祉を増進することを目的とする。

（中略）

（検閲の禁止）

第三条 電気通信事業者の取扱中に係る通信は、検閲してはならない。
（秘密の保護）

第四条 電気通信事業者の取扱中に係る通信の秘密は、侵してはならない。
２ 電気通信事業に従事する者は、在職中電気通信事業者の取扱中に係る通信に関して知り得
た他者の秘密を守らなければならない。その職を退いた後においても、同様とする。

（以下略）

● 上記のように同法で検閲の禁止、秘密の保護が規定されている

● これら以外は技術者の倫理との関係は薄いので説明しない

12.10 著作権法

● エンジニアリングデザインの講義で取り扱うのでこの講義ではごく簡単に

● 改正著作権法で著作権者の許諾を得ずに配信されているデータのダウンロードが違法に、以下の場合

には私的利用のための複製に該当しないと定められた（第30条）

三 著作権を侵害する自動公衆送信（国外で行われる自動公衆送信であって、国内で行われたとしたな

らば著作権の侵害となるべきものを含む。）を受信して行うデジタル方式の録音又は録画を、その事
実を知りながら行う場合

12.11 情報法その他

● 電子署名及び認証業務に関する法律

● 不正競争防止法

● 特定電子メールの送信の適正化等に関する法律

● 民間事業者等が行う書面の保存等における情報通信の技術の利用に関する法律

● その他各種法令に情報に関連した条項がある
12.12 情報法等に関する文献

- 独立行政法人 情報処理推進機構, 情報セキュリティ読本 改訂版, 実教出版, 2006
- 独立行政法人 情報処理推進機構, 情報セキュリティ教本, 実教出版, 2007
- 藤田 (企画・編集), IT ビジネス法入門, TAC 出版, 2010
- 小向, 情報法入門, 第 2 版, NTT 出版, 2011
12.13 課題

配付資料の AFPBB News に記載されたウィキリーシスに関する記事を読み、公益通報の考え方と比較した上で、wikileaks に関して考えるところを述べよ。まわりの人と議論してよいか、自分の言葉で考えをまとめる。
13 環境と技術者
13.1 前回の課題 (Wikileaks) から
13.1.1 昼間主

集計結果

- Wikileaks に...
 - 好意的: 44
 - 懸念的: 25
- 好意的な意見の中には「暴露する情報をもっと厳選するならという条件付きで賛成」というものもあった
- 「どちらともいえない」という意見も一定数あった

好意的意見

- 知る権利の観点から賛成
- 「真実を知らせる」意味でメディアの役割を果たしている
- あらゆる情報が公のものになると新しい世界が広がる
- 内部告発がやりやすくなったことは良い
- Wikileaks がやっていることは公益通報に相当すると思
- 評価はするが暴露する情報は厳選すべき
- イラク戦争情報の公開には価値がある
- 機密情報を入手する技術があることが重要
- 利用者が「裏を取る」努力をするなら良いのでは
- (情報) 弱者利する行為であるから良い
- 政府が信用できないときは役に立つ
- 政府等に対する抑止力としては有効
- 政府等による悪事を暴くことは善である
- 悪事を暴露されるのは自業自得
- 悪の組織を駆逐できるから良い
- テロや戦争を未然に防ぐことができるのでは
- 日本が密室社会だから懐疑的な人が多いのでは
否定的意見

- 安易な内部告発を誘発するのは良くない
- Wikileaks がやっていることは公益通報に相当しないと思う
- 告発の責任が取れているとは思えない
- 暴露した情報が信用できるかどうか疑問
- 緊急性が高い情報をきちんと選んで暴露しているか疑問
- 情報暴露のやり方が粗雑
- 情報暴露を楽しんでいるのではないか
- 政治的中立性が疑わしい
- Wikileaks のやり方は社会不安・混乱・信用破壊を助長するので良くない
- Wikileaks 自身の情報が開示されていないのはおかしい
- Wikileaks はテロリストである
- 情報提供者が保護されるかどうか疑問
- 無差別な情報暴露は多くの人を危険にさらす可能性があり問題
- 戦争の原因となる可能性があるので問題
- 個人情報が保護されていないのは問題

その他の意見

- 情報公開のやり方には工夫が必要
- 良い点と悪い点があり何とも言えない
- 有用な組織だとは思うが引き起こす結果は怖ろしい

13.1.2 夜間主

集計結果

- Wikileaks に...
 - 好意的: 6
 - 懐疑的: 8

肯定的意見

- 情報の透明性は必要
- 情報暴露自体は良いこと
- 組織の透明化をはかってほしい
- 告発自体は悪いことではないが慎重さは必要
- 国際的な告発団体は必要
否定的意見

- 情報は武器であり、安易・無差別な暴露は危険
- 暴露すべきでない情報を表に出しているのではないか
- 暴露情報の選択の仕方がある種の差別を生むのでは
- センセーショナルなゴシップであり必然性はない
- 手続きを不明瞭なのは問題
- 思想的に偏っており危険
- 情報暴露が過剰なのは

その他の意見

- 善悪はともかく暴露情報を見るのは楽しい

13.1.3 担当者コメント

- 誤解している者がいるようだが、Wikileaksによる捕鰻に関する情報の暴露は、日本政府とUSA、オーストラリアの合意の可能性を浸す目的であると思われる(USAおよびオーストラリアの交渉担当者および日本政府が損害を受け、USAおよびオーストラリアの捕鰻対決派を利する)
- Wikileaksについては賛否はあるのだが...
- 萬大学がかかっているプロジェクトであり、無償の奉仕活動であるなんてことはあり得ない
- 大国の情報機関と対等に渡り合っている以上、同等の組織力があると考えるのが自然
- アサング氏はアカドルへの亡命を申請中
- マスメディア、ネットメディア等、大抵のメディアにはスポンサーがいて、情報は基本的にスポンサーのために作られている
- 誰が誰のために流している情報かを考えることが有用
- 正義/悪という2項対立はあまりに幼稚
- 資料に基づいて簡単な分析を試みる:

(2011年7月2日調査)

<table>
<thead>
<tr>
<th>国名</th>
<th>文書量</th>
<th>国名</th>
<th>文書量</th>
</tr>
</thead>
<tbody>
<tr>
<td>アメリカ</td>
<td>500</td>
<td>フランス</td>
<td>128</td>
</tr>
<tr>
<td>英国</td>
<td>384</td>
<td>インド</td>
<td>120</td>
</tr>
<tr>
<td>ドイツ</td>
<td>278</td>
<td>イタリア</td>
<td>99</td>
</tr>
<tr>
<td>中国</td>
<td>215</td>
<td>日本</td>
<td>90</td>
</tr>
<tr>
<td>カナダ</td>
<td>153</td>
<td>ロシア</td>
<td>57</td>
</tr>
<tr>
<td>オーストラリア</td>
<td>134</td>
<td>ブラジル</td>
<td>40</td>
</tr>
</tbody>
</table>

- 上記では、経済規模が一定以上の国をリストアップしてある
・国際的にトラブルが多い国は米国、中国、ロシア
・これと暴露文書の量を比較すると、WikiLeaksが誰のための組織かという推測が成立する（あくまで推測であるが）
・国際社会は基本的に無法地帯である；多くの学生は国際関係についてあまり無邪気すぎるのはいかと思う
・WikiLeaksの行為を情報開示と呼ぶのは誤り（情報開示は当事者がおこなうもの）；WikiLeaksがやって
いるのは暴露

13.1.4 コメント欄から

・アノニマスの正体・目的は？
⇒全然知らないし、正直言って興味もない
・アノニマスが日本を変えることはあるのか
⇒無理
・テレビ番組の録画をDVDにコピーすることは違法化されるのか
 – 技術的保護手段を回避して複写することは私的利用であっても違法というのが今回の改正の趣旨
 – ダビング10の範囲なら問題なし、Disk-to-Diskのコピーは違法
・CDを買ってipodに入れるのは違法となるのか？
⇒CDは暗号化されていないから合法という意見と、コピー禁止フラグが立っているから違法という
意見があり、どちらが正しいのかは現時点では不明；改正著作権法の条文はどちらとも取れる内容にな
っている
・改正著作権法は市場に悪影響を及ぼすのでは？
⇒DVDがまったく売れなくなることは実際に懸念されているが、著作権団体はメディアが大量に売
れる時代が戻って来ることを期待しているらしい
・Youtubeを見ただけで違法となる可能性はあるか？
⇒ある。このため、日本弁護士連合会会長が抗議声明を出している（配付資料）。
・担当者（半場）は改正著作権法についてどう思うか？
 – リッピングの禁止は日本国憲法第29条「財産権は、これを侵害してはならない」に違反している
と考えている
 – 違法ダウンロードへの罰則については、日本弁護士連合会と同意で、違法ダウンロードへの罰
則は当然であるが、改正著作権法には恣意的にいくらでも裁判を発生させ得るという致命的な欠
陷があり、撤回すべきという立場
・原発についてどう思うか
 – あくまで個人的見解だが、社会の安定を保つという観点から言って、短期的（今後10年くらいの
単位）では必要；重大事故のリスクを覚悟の中で容認した方が良い
 – 長期的には安全保障の問題；周辺国が核武装している以上、核エネルギーを手放すのは得策で
ないのでは

163
原発は可能な限り縮小してメタンハイドレート等で代替した方が良いと思う（こちらにもリスクはあるが）

シーシェーバーの標的は日本だけか？
- 日本鯨類研究所有発行する“Sea shepherd’s violent history”（www.icrwhale.org/eng/history.pdf）によると、アイスランド、ノルウェーなどが標的になったことがある
- 日本への攻撃は特に激しい
- シーシェーバーは人種差別団体であるという声もある

Wikileaks には誰でも書き込みできるのか？
⇒ Wikipedia とは全然違う。運営の実態・情報の入手手段・暴露情報の選択基準等、すべて不明瞭。Wikipedia と名前が似ているから誤解しているのではないか。

病院が亡くなった人の情報を漏らした場合は個人情報保護法違反になるのか？
⇒ 定義によって、個人情報保護法違反ではない。プライバシー保護の観点から情報漏洩が罪に問われる可能性はあるが、これは別の法の問題
13.2 持続可能な開発

- 将来的の世代の欲求を満たしつつ、現在の世代の欲求も満足させるような開発
- 歴史的には日本は持続可能な開発に関する先進国
 - 植林の歴史は古く、いくつかの文明が森林を破壊したことと対照的
 - 江戸時代にはある種の循環型経済が確立していた
 - 以下で、これらについて述べる

13.3 日本植林史

以下の記述は http://watashinomori.jp/ に準拠

- 織文時代: 焼き畑農業、火入れ後に樹木の苗を植えていた
- 飛鳥～平安時代: 建築、水田開発のために森林乱伐進展、日本書記に森林伐採禁止令の記録 (天武天皇, 676 年)、製塩、製鉄のための森林伐採もおこなわれ、平城京、平安京、寺社仏閣建設に伴い森林荒廃が進む
- 蕃倉時代: 戦乱のためさらに森林荒廃進展
- 室町時代: 天竜の大居町秋葉神社でのスギ・ヒノキの植林、奈良県古野川上郡でスギの植林が開始 (人工造林の最古の記録)、1550 年頃から山林荒廃の防止・治水のための植林推奨
- 安土桃山時代: 武蔵国高麗郡で数万本の苗を植え、かつ原野を切り開いて植林、一方で建築のための森林伐採もさかん
- 江戸時代:
 - 森林破壊黙認、1710 年頃までは本州・四国・九州・北海道南部の森林のうち当時の技術で伐採出来るものの大半は消失、禿げ山発生、洪水増加
 - 幕府は村々での植樹・造林を命令、1661 年には林産資源保続のため「御林」設定、伐採禁止
 - 民間林業も出現、森林資源は回復に転じる
- 明治～昭和地代 (戦前まで)
 - 初は森林破壊進展
 - 社会の安定とともに山林保護規制
 - 1929 年には造林推奨規則、私有林まで補助対象を拡大
 - 太平洋戦争のため激しい森林破壊
- 戦後
 - 山林荒廃のため史上類例のない大水害が発生
 - 1950 年、国土緑化推進委員会結成、国土保全が進む
 - 造林ブーム、里山、奥山を伐裁して人工林に
 - 木材の輸入拡大に伴い需要縮小、現在は人工林の荒廃が進む
 - 現在、日本の森は危機的状況にある
13.4 江戸地代の循環型経済

典拠: 鬼頭, 文明としての江戸システム, 講談社, 2002

- 江戸地代の日本の都市における死亡率は農村よりは高かったが、同時代のロンドン、パリよりはずっと良好
- 塵芥の投棄を厳しく規制
- 水道整備 (金沢水道など)
- 人の糞尿を肥料として近郊農村へ販売
- 徹底した資源リサイクル: 古手屋 (古着の再利用), 紙屑拾い (再生紙を作るための紙屑拾い), 螃蟹の流
れ買い (螃蟹の溶けて流れたものを集めて再生) など
- ゴミで海を埋め立てて街区を拡大

13.5 公害とその対策

13.5.1 別子銅山煙害

- 別子銅山 (1691～1973年, 住友が経営)
- 1884年, 精錬所が新居浜海岸に移転, 農産物に煙害 (2酸化硫黄) が発生
- 対策のため精錬所を四阪島に移転したが, 煙が対岸に届くことがあり不十分
- 1939年, ヨーロッパから硫酸製造技術を取り入れ, 排煙から硫酸を回収して肥料製造, 対策終了
- 塩害を受けて荒廃した山には大規模植林

13.5.2 公害対策法令など

<table>
<thead>
<tr>
<th>年</th>
<th>法令</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>神奈川県事業場公害防止条例</td>
</tr>
<tr>
<td>1962</td>
<td>煙の排出の規制等に関する法律</td>
</tr>
<tr>
<td>1967</td>
<td>公害対策基本法制定 (1993年に環境基本法に)</td>
</tr>
<tr>
<td>1968</td>
<td>大気汚染防止法</td>
</tr>
<tr>
<td>1970</td>
<td>公害紛争処理法</td>
</tr>
<tr>
<td>1971</td>
<td>特定工場における公害防止組織の設置に関する法律</td>
</tr>
<tr>
<td></td>
<td>公害の防止に関する事業に係る国の財政上の特別措置に関する法律</td>
</tr>
<tr>
<td>1973</td>
<td>公害健康被害の補償等に関する法律</td>
</tr>
<tr>
<td>1975</td>
<td>石油コンピュータ等災害防止法</td>
</tr>
</tbody>
</table>

13.5.3 4大公害

- 四日市公害:
 地方自治体の的確な対応により比較的迅速に終息
 教科書1に記述があるのはこれだけ
- 水俣病: 長期に渡る訴訟
13.5.4 四日市公害 (三重県四日市市)

典論: 公益財団法人国際環境技術移転センターhttp://www.icett.or.jp/yokkaichi/index.html

四日市ぜんそくが有名

最初に影響を受けたのは漁業 (水質汚濁)
1959 国内初の石油化学コンビナート稼働 (エチレン工場等), 東京・築地の中央卸売市場では伊勢湾の魚は異臭を理由に返品あるいは大きく値引き, 周辺住民にぜんそく発生
1960 三重大学がコンビナート周辺の亜硫酸ガス濃度・降下ばい塵濃度の計測開始・同時に住民の健康調査実施, 四日市市が四日市市公害防止対策委員会発足し汚染状況調査
1961 三重県伊勢湾水対策推進協議会が異臭魚の原因をコンビナート汚水と特定, 四日市市公害防止対策委員会が最終報告で四日市の呼吸器・循環器系統の疾患による死亡者数が著しく増加傾向にあると指摘
1962 煙突の排出の規制等に関する法律
1963 第2石油化学コンビナート稼働, 公害関連の住民の苦情増 (異臭が主体)
1963 国が調査開始, 同年3月に報告書, 公害対策における産業と行政の基本的な義務を示す
1964 国, 四日市市を上記の法の指定地域に (1966年施行)
四日市市による公害患者の治療費負担制度 (当時としては冒険的)
1967 公害対策基本法
1967 磯津地区の患者が第1コンビナートの6社を相手に民事訴訟を起こし, これが四日市公害訴訟に発展
1968 大気汚染防止法, 石油化学コンビナート関連企業が公害防止協定を締結
1970 四日市地域公害防止計画
1972 第2石油化学コンビナート稼働, 大気汚染総量規制, 上記訴訟で原告患者側が勝訴
1973 公害健康被害の補償等に関する法律
1974 石油コンビナート等災害防止法
1975 四日市市, 長期的な亜硫酸ガスの環境基準を達成

技術的対策: 煙突の高層化, 脱硫装置の開発と導入, 脱窒装置の開発と導入, 汚染監視網の整備

地方自治体 (三重県, 四日市市) が当初から公害対策に積極的, 公害立法は四日市公害対策とともに進んでいるのがわかる; 技術的対策も含めて公害がうまく解消された例

13.5.5 水俣病 (熊本県水俣市)

典論: 熊本県水俣病問題についてのホームページhttp://www.pref.kumamoto.jp/site/548/minamata40.html

メチル水銀により中枢神経を中心とする神経系が障がいされる中毒性疾患, 無機水銀中毒 (腎臓等障害) とは異なる

四肢末端の感覺障害, 小脳性運動失調, 両側性求心性視野狭窄, 中枢性眼球運動障害, 中枢性聴力障害, 中枢性の平衡機能障害等

母乳が妊娠中にメチル水銀の曝露を受けると胎児性の水俣病 (脳性小児マヒに似た症状)
1956 チッソ附属病院から水保健全所に職状を主訴とする原因不明の患者発生報告 (水保健全事務所確認)、水保健全委員会設置、県が生産者 (当時) に通知、熊本大学に研究依頼、熊本大学水保健全医学研究班発足、熊本県水保問題対策委員会設置、県が水保健全所での職務を行うように県衛生局に指導通達
1959 水保市長等のあっせんにより水保健全に対する工場の補償要結、新日窒素工場排水浄化装置完成、水保健全構造
1960 経済企画庁水保健全調査研究連絡協議会発足
1963 熊本大学水保健全医学研究班が水保健全の原因 (メチル水銀化合物说) 発表
1966 チッソ工場アセトアルデヒド排水循環方式完成
1968 チッソ工場アセトアルデヒド製造停止、厚生省が水保健全の原因を新日本窒素工場の工場排水によるものと発表、補償交渉開始
1969 互助会が自発交渉がチッソから拒否されたとして訴訟を検討; チッソ水保健全工場サイノマ工場アルカリ洗浄塔排水の処理装置完成; 互助会92世帯のうち28世帯がチッソを相手どり熊本県に恩恵料の請求を提起 (水保健全第一次訴訟); チッソ水保健全工場がアセトアルデヒド触媒の処理を開始した
1970 熊本県知事が公害に係る健康被害の救済に関する特別措置法に基づく患者として67人を認定
1971 チッソ水保健全工場がアセチレン塩化ビニール製造を中止
1973 患者家族141人がチッソを熊本地裁に提起 (水保健全第一次訴訟)、水保健全第一次訴訟判決で原告勝訴確定、熊本大学第二次水保健全研究班が研究結果を県に報告、水保健全者とチッソとの補償協定調印 (この後認定患者について経済を残す)
1974 水保健全患者と遺族ら103人がチッソ関係を殺人罪及び傷害罪で熊本県警に告訴・告発、406人の認定申請 (熊本県別地方裁判所に不作為の違法確認請求訴訟を提起)
1976 熊本地方検察庁がチッソの元社長および元工場長を事件上過失致傷害罪で熊本地方裁判所に起訴; 水保健全不作為の違法確認請求訴訟判決で認定案件の是非は熊本行政庁の法庁で当たるとし県および国に対し認定案件は国において直接処理するよう要望
1978 水保健全認定申請者22人が県を相手どり「水保健全認定業務に関する熊本県知事の不作為に対する損害賠償請求訴訟（いわゆる「期待料訴訟」）を熊本地裁へ提起
1979 水保健全認定業務の促進に関する臨時措置法施行、水保健全二次訴訟 (被告チッソ) 熊本地裁で判決(原告勝訴)
1982 水保健全認定申請者等40人が国・県・チッソを相手どり「水保健全国家賠償請求訴訟 (関西訴訟)」を大阪地裁に提起
1983 待ち料訴訟判決 (原告勝訴)、県は控訴
1984 水保健全認定申請者6人が国・県・チッソ等を相手どり「水保健全国家賠償等請求訴訟 (東京訴訟)」を東京地裁に提起
1985 水保健全第二次訴訟控訴審判決 (30日確定) (原告4人勝訴、1人棄却)、待ち料訴訟控訴審判決 (原告勝訴)、県は上告、水保健全認定申請者等5人が国・県・チッソ等を相手どり「水保健全国家賠償等請求訴訟 (京都訴訟)」を京都地裁で提起
1986 水保健全認定申請棄却処分取消訴訟判決 (原告勝訴)
1987 水保健全第三次訴訟第1選訟判決 (熊本地裁) (原告勝訴、国と県の責任認める)、国・県・チッソとも控訴; 水保健全の認定業務の促進に関する臨時措置法の一部改正施行
1988 水保健全刑事事件上告審判決 (チッソ元社長ら有罪確定)、公害健康被害補償法の一部改正施行
1991 待ち料訴訟上告審判決 (熊本・変更)、水保健全東京訴訟判決 (東京地裁) (国・県の責任認める)、水保健全東京訴訟判決 (東京地裁) (原告100人勝訴)、国・県・チッソ控訴、原告も控訴;
1992 水保健全東京訴訟判決 (東京地裁) (国・県の責任否認)、原告控訴
1993 水保健全第三次訴訟第2選訟判決 (熊本地裁) (原告勝訴、国・県・チッソ控訴、原告も控訴、水保健全京都訴訟判決 (京都地裁) (原告勝訴)、国と県の責任を認める)、国・県・チッソ控訴、原告も控訴
1994 水保健全東京訴訟判決 (大阪地裁) (国・県の責任否認)、チッソ控訴、原告も控訴
1995 水保健全東京訴訟判決 (大阪地裁) (国・県の責任否認)、チッソ控訴、原告も控訴
2004 水保健全東京訴訟最高裁判決、国と県の責任を認める

・熊本県のWWWページの記述は膨大、相当部分は略した
・訴訟が多すぎ、解決に時間がかかりすぎ

13.5.6 新潟水保法 (新潟県阿賀野川流域)
原因は昭和電工鹿瀬工場のアセトアルデヒド生産; 製造工程で副生されたメチル水銀を未処理で阿賀野川に排出
1965 昭和電工鹿瀬工場、アセトアルデヒドの生産を停止、アセトアルデヒド製造工場を焼却し、製造プラントを撤去; 東京大学教授（後に新潟大学教授）、新潟市の入院患者を診察し有機水銀中毒症と疑う、新潟大学の植木、植木両教授、新潟県衛生部（現福島保健部）に対し水銀中毒患者発表を報告、両教授と新潟県衛生部
が有機水銀中毒患者発生を発表; 新潟県と新潟大学、合名で新潟県水銀中毒症患者集団を設立; 新潟大学医学部など、阿賀野川流域の住民の健康調査を開始; 新潟県、新潟県水銀中毒対策本部を設置、新潟市、水銀中毒対策委員会を設置、厚生省、新潟水銀中毒事件特別研究班を発足; 新潟県、新潟県有機水銀中毒症患者診査委員会の設置を決定; 昭和電工、鹿瀬工場を分離し鹿瀬工場を設立
1966 厚生省の特別研究班、関係各省庁合同会議、「工場排水が原因と断定するには不十分」と結論を保留、新潟大学の津田助教授、新潟県の水銀中毒対策本部に「鹿瀬工場の排水口の水処理からメチル水銀を検出した」と報告; 昭和電工、工場排水説による反論と農業水を発表; 横浜国立大学教授、新潟地震により流出した農業水が逆流して下流流域を汚染したという説を発表
1967 厚生省の特別研究班、厚生省に「新潟水銀中毒事件特別研究報告書（第 2 の水俣病と結論）」を提出; 新潟水俣病第 1 次訴訟
1968 政府、水俣病についての統一見解を発表、「新潟水俣病は昭和電工鹿瀬工場のアセトアルデヒド製造工程中で副生されたメチル水銀化合物を含む排水が大きく関与して中毒発症の基盤となっている」
1969 阿賀野川流城一帯が水俣病の公害地域に指定
1971 新潟水俣病第 1 次訴訟判決 (原告勝訴、確定)
1978 阿賀野川水銀汚染等調査専門家会議、阿賀野川の水銀汚染の安全宣言; 新潟県、阿賀野川の大型魚の食用規制を全面的に解除;
1982 新潟水俣病第 2 次訴訟
1986 水俣病認定申請業者法施行取消請求事件判決 (原告勝訴、被告控訴)
1995 連立与党、熊本水俣病について水俣病認定患者救済の最終解決案を正式決定 (被患者団体が受け入れ); 新潟水俣病訴訟会議と昭和電工、熊本案件に沿うことで合意; 新潟水俣病被患者の会・共闘会議と昭和電工、解決協定を締結; 政府、「水俣病対策について」の閣僚決定
1996 新潟水俣病第 2 次訴訟第 1 陣、東京高裁で和解成立; 新潟水俣病第 2 次訴訟第 2 陣〜第 8 陣、新潟地裁で和解成立

13.5.7 イタイイタイ病
カドミウムの慢性中毒により、まず腎臓を障害し、次いで骨軟化症をきたし、これに妊娠、授乳、内分泌の変調、老化および栄養としてのカルシウム等の不足などが誘因となって特異な疾患を形成
三井鉱業 (株) 神戸鉱業所から排出される廃水等に含まれるカドミウムが原因とされる
1955 萩野昇、河野穂氏によって第17回日本臨床外科医会で原因不明の奇病の実例が報告
1959 岡山大学小林教授が河川水、井戸水にカドミウム、鉛、亜鉛等が顕著に含まれていること
を発見
1960 神速川水系河川水、神岡鉱業所の廃滓、糞、魚、患者の臓器、骨等にカドミウム、鉛、亜
鉛が顕著に含まれていることが判明、カドミウム原因説
1961 富山県地方特殊病対策委員会の設置
1963 厚生省医療研究助成金によるイタイイタイ病研究委員会発足、文部省科学研究費によ
るイタイイタイ病研究班発足
1966 厚生省公害調査研究費による医療研究イタイイタイ病研究委員会発足
1968 富山県イタイイタイ病および類似患者等に関する特別措置要綱による対策の実施、富山
県イタイイタイ病患者審査委員会は集団検診結果に基づいて患者73名、要観察者150
名を認定、厚生省は富山県におけるイタイイタイ病に関する見解を発表
1969 健康被害救済法施行（実施は45年2月1日）、96名認定
1971 イタイイタイ病裁判第1次提起分判決（原告一部勝訴）、原告被告双方控訴
1972 イタイイタイ病控訴審判決、イタイイタイ病控訴審判決（原告一部勝訴）、8月24日確
定

- 担当者の出身地（静岡県浜松市）は担当者が高齢の頃（1975年頃）は繊維工業がさかん、工場が排出
を垂れ流しており、どぶ河の水は、ある日は紫、他の日はピンク、と変わっていた。中華人民共和国の七
色の川を笑えない
- 筆者が子供の頃、天竜川河口周辺に広がる中田島砂丘はかなりの規模であったが、1976年の船明ダム
竣工以降みるみる縮小し、今は見る影もない

13.6 環境問題
- 環境問題は地球規模の問題になっている
- 環境問題に関する報道にはテマや誇張が極めて多い
- 学者の主張にも賛否なものが相当数ある
- 上記のような事情なので、以下の議論では、担当者（半場）の個人的な見解を前面に出して説明するが、
担当者の見解に賛同する必要はない
- 教科書の見解など、いろいろな意見を参考にして、各自が自分の考え方（価値観）を確立するとよい

13.7 地球温暖化
13.7.1 太陽活動、17世紀以来の休止期に突入か
表記を一部変更して引用

太陽活動、17世紀以来の休止期に突入か 米研究
2011年6月16日10:08 発信地:ワシントン D.C./米国
【6月16日AFP】太陽黒点の増減に周期があるることは、よく知られているが、太陽活動が近く
休止期に入る可能性があると、米ニューメキシコ州Las Crucesで開かれた米国天文学会の太陽

170
物理学部門の会合で、天文学者らが指摘した。黒点が著しく減少する太陽活動の休止期は17世紀以来はじめてであり、このような時期には、わずかだが地球の気温が低下する可能性がある。
数年前の太陽学者たちは、太陽は2012年に後激しいフレア活動や黒点増加がみられる活動極大期を迎えると予想していた。しかし最近、太陽はその予測とは正反対に、異様な静けさを見せている。
その申し上げるとしては、ジェット気流や黒点の消滅、極点付近での活動低下などがある。国立太陽観測所のFrank Hill氏によると、極めて珍しい予測の現象で、今後、黒点周期は休止期に入るとみなされているが。
太陽活動は、ほぼ11年周期で変動を続けており、22年ごとの磁場極性反転の中間期に、それぞれ活動極大期と極小期が現れる。
天文学者らは現在、近く訪れるとみられる太陽活動の休止期がモーダーと呼ばれる70年間続く活動極小期にあたるかどうかを調べている。モーダーの期間は黒点がほとんど観測されない。前回のモーダー期だった1645年から1715年は「小水期」とも呼ばれている。(c)AFP/Kerry Sheridan

- 気象庁http://www.data.kishou.go.jp/climate/cpdinfo/temp/のデータに基づき、世界の平均気温の変動を見てゆく
- 基準年は1980年〜2010年の平均
- 平均気温は世界で1°C程度上昇、日本で2°C程度上昇
- 実は、いわゆる温室効果ガスと気温との因果関係は科学的には立証されていない（従来から太陽の活動は問題にされていた、これがAFPの記事につながる）

13.7.2 世界の平均気温の変動

13.7.3 日本の平均気温の変動
13.7.4 温室効果ガスの排出量（国別）

- International Energy Agency (IEA) が発行する
 CO₂ Emissions from Fuel Combustion Highlights, 2011 Edition
 (http://www.iea.org/co2highlights/CO2highlights.pdf)
 に基づき、国別の燃料消費に伴う CO₂ 排出量の推移を見る（Sectoral Approach, 同文書 46 ページ）
- 2009 年の世界の燃料消費に伴う CO₂ 排出量は 28.9994 × 10⁹ トン

13.7.5 温室効果ガスの排出量（国別）

- 1〜5 位は以下の通り:

<table>
<thead>
<tr>
<th>国</th>
<th>排出量（×10⁶ トン）</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>中華人民共和国</td>
<td>6877.2</td>
<td>23.7</td>
</tr>
<tr>
<td>USA</td>
<td>5195.0</td>
<td>17.9</td>
</tr>
<tr>
<td>インド</td>
<td>1585.8</td>
<td>5.5</td>
</tr>
<tr>
<td>日本</td>
<td>1092.9</td>
<td>3.8</td>
</tr>
<tr>
<td>ドイツ</td>
<td>750.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

13.7.6 温室効果ガスの排出量（国別）

- 6〜10 位は以下の通り:

<table>
<thead>
<tr>
<th>国</th>
<th>排出量（×10⁶ トン）</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナダ</td>
<td>520.7</td>
<td>1.8</td>
</tr>
<tr>
<td>韓国</td>
<td>515.5</td>
<td>1.8</td>
</tr>
<tr>
<td>UK</td>
<td>465.8</td>
<td>1.6</td>
</tr>
<tr>
<td>メキシコ</td>
<td>399.7</td>
<td>1.4</td>
</tr>
<tr>
<td>オーストラリア</td>
<td>394.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>
13.7.7 排出量1～10位の国の1971年との比

<table>
<thead>
<tr>
<th>国</th>
<th>1971年</th>
<th>2009年</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>韓国</td>
<td>52.1</td>
<td>515.5</td>
<td>989.4</td>
</tr>
<tr>
<td>中華人民共和国</td>
<td>809.6</td>
<td>6877.2</td>
<td>849.5</td>
</tr>
<tr>
<td>インド</td>
<td>200.2</td>
<td>1585.8</td>
<td>792.1</td>
</tr>
<tr>
<td>メキシコ</td>
<td>97.1</td>
<td>399.7</td>
<td>411.6</td>
</tr>
<tr>
<td>オーストラリア</td>
<td>144.1</td>
<td>394.9</td>
<td>274.0</td>
</tr>
</tbody>
</table>

注：排出量は100万トン単位

<table>
<thead>
<tr>
<th>国</th>
<th>1971年</th>
<th>2009年</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナダ</td>
<td>339.4</td>
<td>520.7</td>
<td>153.4</td>
</tr>
<tr>
<td>日本</td>
<td>758.8</td>
<td>1092.9</td>
<td>144.0</td>
</tr>
<tr>
<td>USA</td>
<td>4291.3</td>
<td>5195</td>
<td>121.0</td>
</tr>
<tr>
<td>ドイツ</td>
<td>978.6</td>
<td>750.2</td>
<td>76.7</td>
</tr>
<tr>
<td>UK</td>
<td>623.5</td>
<td>465.8</td>
<td>74.7</td>
</tr>
</tbody>
</table>

注：排出量は100万トン単位

- 日本のCO₂排出量の世界に占める割合は僅か3.8%であり、日本のCO₂排出削減努力にはほとんど意味がない（日本経済が疲弊するだけ）
- 中華人民共和国のCO₂排出量の世界に占める割合は23.7%、ここを減らさなければ意味がない
- CO₂排出量が激增している韓国、中華人民共和国、インドは問題
13.8 黄砂

13.8.1 国内で黄砂が観測された日数

http://www.data.kishou.go.jp/obs-env/kosahp/kosa_table_1.htmlに基づき作成

http://www.data.kishou.go.jp/obs-env/kosahp/kosa_table_0.htmlに基づき作成

- 情報源は気象庁のページ
- 農業環境技術研究所のページ http://www.niaes.affrc.go.jp/によると、黄砂に放射性セシウムが含まれる
- 黄砂中の有害物質については、大分県立看護科学大学市瀬孝道教授のページにデータがある
b-glucan(カビの菌糸体成分), LPS(細菌内毒素), 硝酸イオン, 硫酸イオンなど

13.9 オゾンホール

13.9.1 オゾンの総量の経年変化 (昭和基準)

13.9.2 オゾンの総量の経年変化（那覇）

13.9.3 オゾンの総量の経年変化（つくば）

13.9.4 オゾンの総量の経年変化（札幌）

- 単位: ミリアトムセンチメートル, 総量を 0°C, 1 気圧の地表に集めたときの厚さ
- 昭和基準では、確かにオゾンは減っている
- 国内では大きな変化はない
13.9.5 日積算 UV-B 量の 2 月平均値 (昭和基地)

13.9.6 日積算 UV-B 量の年平均値 (那覇)

13.9.7 日積算 UV-B 量の年平均値 (つくば)

13.9.8 日積算 UV-B 量の年平均値 (札幌)

• UV-B は波長 280〜315 nm の紫外線で、大気層をある程度通過し、生体への影響が大きい

• 南極のみ 2 月平均 (極夜等の問題のため), 他は年平均, 単位は kJ/m²;

• 気象庁と環境省は紫外線量が増加傾向であると主張している (これらの機関が公開しているグラフでは、変動分を強調するため、縦軸の範囲が狭く限定されている); 太陽活動との関係が検討された形跡はない

• フロンガスの総量は減少傾向、この意味でオゾンホール対策はうまくいっている

13.10 酸性雨

• 国立環境研究所のページ http://www.nies.go.jp/nieskids/main2/ph111 によると、日本における酸性雨の発生源 (イオウ酸化物) は以下の通り: 中国 (49%), 朝鮮 (12%), 東南アジア (2%), 台湾 (1%), 国内 (21%), 火山 (13%), その他 (2%)

• 酸性雨は本質的に国際問題、国内での対策は無理

13.11 その他の環境問題など

• ダイオキシン: 一時大きく騒がれたが統制化、そもそも毒性は二時期マスメディアで騒がれていたほど高くない

• 環境ホルモン (内分泌懸乱物質) についても大騒ぎになった時期があったが、結局ほどデマだった

• リサイクルの必要性が強調されているが、やり方次第では高コストになるので合理的な運用を工夫する必要がある

• 教科書 1 の著者は 204 ページで東アジア共同体への期待を述べているが、担当者 (半場) はこれに同意しない

13.12 環境倫理

以下しばらく馬渕、倫理空間への問い、ナカニシヤ出版、2010 に拠りして説明

13.12.1 環境倫理学の主張

• 自然の生存権: 人間だけでなく、生物の種、生態系、景観などにも生存の権利があり、勝手にそれを侵害してはならない

• 世代間倫理: 現在世代は未来の世代の生存可能性に関して責任がある

• 地球全体主義: 地球の生態系は閉じた宇宙ではなくて閉じた世界である
13.12.2 環境倫理学の類型

- 倫理の中心に人間をおく考え方: 人間中心主義
- 環境倫理学は脱人間中心的、反人間中心主義
- 人間からの距離感にしたがって以下のように分類される:
 - 動物中心主義: すべての動物を道德的配慮の対象とする
 - 生命中心主義: すべての生物を道德的配慮の対象とする
 - 生態系中心主義: 生態系を道德的配慮の対象とする

13.12.3 担当者見解

- 人間が生態系に道徳的に配慮ができるという発想自体が人間中心主義であり、自己矛盾
- 環境倫理学者の主張にしたがうと
 - 太陽光が地表に届かない原始地球の状態は倫理的に正しくなかった
 - 台風は沖縄の環境権を侵害している

などといった主張もできることになるので、ばかげている
13.13 課題

教科書 [1], 207ページ（過去の世代の失敗に対して、後世は、どこまで、どのように責任を負うべきか）について考え、見解を述べよ。まわりの人と議論してよいが、自分の言葉で考えをまとめる事。

179
14 技術者の財産的権利
14.1 前回の課題 (失敗の責任) から

14.1.1 昼間主

- 誰かが責任を取らなければならないので後の世代に負担がかかるのは仕方ない
- 会社等が過去の失敗の責任を引き継ぐのは当然・仕方ない
- 国や自治体は事態収束まで責任を果たすべき
- 過去の世代の成果の恩恵を受けている以上失敗も引き受けるべき
- 失敗の記憶を継承すべき・失敗を知識 (経験) 化すべき
- 失敗を繰り返さないようにすべき
- 失敗の原因を究明すべき
- 海のごみの清掃などはやらざるを得ない
- 持続可能な開発は必要
- 解決策を検討すべき
- 賠償金を支払うべき
- 被害者救済は必要
- 問題解決のための技術開発をすべき
- 後の世代は時代の移り変わりを理解し変化する状況に適応すべき
- 今の問題を解決するのは今の人のみで
- 会社の失敗の場合は失敗したのは会社、世代論は問題のすりかえ
- 自分達が後の世代に失敗の後始末をさせるのは良くない
- とにかく現在の世代が全責任を負うべき (!)
- 被害を受けた人がいないまで賠償を続けるべき (!)
- 信頼を回復するまで責任を負うべき (!)
- 過去の世代に責任を取らせるべき (!)
- モラルハザードを防ぐために後の世代が100%責任を負うべき (!)
- 親の残した借金などは責任を負うべき (!)
- もとの状態に戻すべき (!)
- 後の世代には責任はない・理不尽だ
- 問題によって対応が変わる・一般化できない
- 失敗した者が解決策を提示すべき (!)
14.1.2 夜間主

- 過去の経験を継承すべき
- 問題解決のための技術開発をすべき
- ある程度責任はあり、賠償等は必要
- 現在の世代に影響があるような責任の取扱方はすべきでない
- 会社等が過去の失敗を償うのは当然
- 過去の世代が責任を果たしてないなら現在の世代が責任を負うべき
- 今の問題について安全管理すればよい
- 現在の世代は過去の世代が納得するような責任の取扱方をすべき（）
- 親の借金は返さなければならないのではないか
- 地球という環境を共有している以上全責任を負うべき（）

14.1.3 担当者見解（あくまで個人的意見）

- 過去の世代は要するに他人であって、責任は原則として「ない」と思う
- 現在前の前にある問題は要するに現在の問題であって、その原因が過去の世代の失敗であるか否かは本質的でないのでは
- 失敗の知識化も、要するに今をよりよく生きるためであって、責任論とは無関係
- 被害者の救済は（社会福祉の観点から）必要だとは思うが、責任とは切り離して考えられる
- 現在の問題は可能な限り現在で閉じるよう努力すべき
- たとえば、年金を払う方が受けとれないというのに納得できるのか、という問題がある
- 老人が現役世代に責任を負わせるような説を形成するのもある種のモラルハザードではないか
- 失敗から「学びすぎる」のも問題（「義憲の体を吹く」）
- 法治主義の観点から言って、過去の社会で過去の世代に賠償をさせることは不当
- 相続放棄という手続があり親が残した借金を負う法的義務はない、相続権はあくまで権利であって義務ではない
- 選択の余地があるかどうか問題（就職する会社は選べるが親は選べない）
- 被災者利権などといったものも存在する
- 「被害者が満足するまで」というのはナンセンス・無限責任は未開人の思想
14.1.4 コメント欄から

- 南極に紫外線が降り注いで何か問題があるのか?
 - 大気循環によってオゾンの少ない大気が流動するので南半球高緯度地域には影響あり
 - オゾンホールの問題は、発見時点では地球全体で紫外線量が増える可能性があり、大問題だった。
 - よって、この時点で大騒ぎしたのは妥当
 - フロンガス規制はうまくいった
 - 中緯度地域のオゾン破壊はほぼ止まったと考えられている；オゾン層回復には回復には50年以上かかる見込み

- 南極のオゾン減少の原因は何か？
 - フロンガスが成層圏で紫外線によって分解されること；南極域の成層圏にできる雲と極渦で反応が進む
 - 中緯度地域上部成層圏では、塩素がメタンや二酸化窒素と結合することでオゾン破壊が止まる
 - オゾン層に関する情報については、
 国立環境研究所, オゾン層の破壊–過去・現在・未来–
 を参照するとよい
14.2 ナイロン

- ナイロンはデュポンで開発された合成繊維
- 以下の記述の典拠: デュポン社の WWW ページ
- 教科書の記述は新聞記事の引用であるが、正確でない
- デュポン社の創業者は E. I. デュポン、フランス革命で USA に逃れる; 創業は 1802 年 (火薬工場)
- ナイロン開発者のウォーレス・ヒューム・カロザースは 1928 年にハーバード大学からデュポンの中央研究所に招聘 (当時から激しい鬱病), 高分子研究計画を指揮
- カロザースの興味の対象は高分子化合物 (当時は構造不明), ポリマーは端と端が鎖状につながった小さな単位できているという説 (ヘルマン・スタウディンガーが提唱, 当時は少数派) があり, カロザースはスーパーポリマーを合成することでこれを証明しようとした
- カロザースのチームは 1930 年にゴムの合成に成功 (アーノルド・コリンズ), 同日にポリエステルのスーパーポリマー作成に成功 (ジュリアン・ヒル)
- チームの成功とは裏腹にカロザースの精神状態は悪く, 自殺の示唆をする
- 1930 年代は恐慌, 経営陣は研究所を守ったが, カロザースは多忙を極め, しかも経済的に成功する製品は出す
- 1935 年の 66 繊維でようやく製品化
- 1937 年, カロザース, ホテルの一室で, 常に持ち歩いていた青酸カリを呑って自殺; 自分の科学的アイデアが枯渇することを怖れていたらしい

14.3 技術流出

- 教科書には 1983 年の新潟鉄工資料持ち出し事件に関する記述
 - 技術者たちが, 自分たちが 10 年かけて作った CAD ソフトを社外に持ち出した事件
 - 横領扱いだが情状酌量の余地があるという判決が出ている
- 近年は, 中国人などによる技術の持ち出しが深刻化

14.3.1 新幹線 (日本経済新聞)

http://www.nikkei.com/news/headline/article/g=96958A9C9381959FE0E1E2E7958DE0E1E2E4E0E2E3E39494E0E2E2E2

中国版新幹線、米で特許申請準備 日中紛争の火種に現地報道 川重の供与技術、中国側「独自開発」と主張

2011/6/23 21:47

【北京＝多部田俊輔】中国国有の鉄道車両製造大手、中国南車は米国で高速鉄道車両「CRH380A」の技術特許を申請する方向で検討を始めた。同車両は川崎重工業の技術をベースとしているが、南車は自社開発した技術だと主張。北京・上海高速鉄道 (中国版新幹線) に使用しており、特許取得の申請で国威発揚につなげる狙いだ。米国での高速鉄道の受注もにらみ、日中間で特許紛争が起きる可能性が出てきた。
中国政府系英字紙チャイナ・デーリーが23日、南車幹部の話としてCRH380Aの米国の特許申請の検討を伝えた。特許を申請するのは、車両のベースとなる台車や先頭車両の先端部の技術で、すでに米国で弁護士を雇うなどの具体的な準備に入った。

南車の広報担当者も日本経済新聞の取材に対して、報道を大筋で認めた。CRH380Aは川重の技術をベースとしているが、独自の技術で改良を加えて時速380キロでの走行を可能にしたとしている。

川重の広報は「米国で特許申請がなされていないため、コメントできない」としている。ただ、同社関係者はCRH380Aは川重が技術提供した車両「CRH2」の延長線上としており、実際に申請すれば特許紛争になる可能性もあるとの見方を示した。

北京・上海高速鉄道は総投資額が2兆7千億円に達する過去最大の公共事業。開業は中国共産党創設90周年を記念するイベントとして位置付けられており、鉄道省は高速鉄道で技術力の高さをアピールし、国威発揚を狙っている。

しかし、中国メディアは鉄道省元幹部のコメントとして「CRH380シリーズ」は日本やドイツの技術だと指摘。日独の要請を無視した安全性を犠牲にしてて時速350キロによる走行を目指したが、技術力のアピールを最優先した鉄道省トップの機択による更迭で最終的に時速300キロに落としたと暴露した。鉄道省や南車はメンツをつぶされた理由となったため、政府系英字紙を使って特許申請の動きを伝え、独自技術であることを主張する狙いとみられる。

特許申請の報道には、米国での高速鉄道計画の受注を巡るつばさり早いという側面もある。川重を中心とする日本の企業連合はカリフォルニア州の計画の参入に名乗りを上げている。中国側も米国の受注を目指しており、特許取得の申請で優位に立とうという意思がにじむ。ただ米国の特許申請で新幹線技術が中国独自のものではないと判断されるリスクもあり、中国南車が実際に特許を申請するかどうかは不透明との見方もある。

14.3.2 電気自動車に関する情報漏洩 (産経新聞)

“スパイ天国” 狙われる日本企業 厳罰化も海外では無力

日産自動車と仏ルノーが共同開発していた電気自動車(EV)に関する情報漏洩問題は、産業スパイ事件として捜査が本格化する。高度のハイテク技術を持つ日本企業はこれまでもスパイの標的となる一方で、危機意識の希薄さから“スパイ天国”とも揶揄されてきた。流出先を伝えられる中国など新興国企業との競争が激化する中、今後も日本企業が狙われる可能性は高い。政府も厳罰化などの対策を進めてきたが、今回のように提携先の海外企業からの漏洩は想定していないなど新たな課題を突き付けている。

平成19年に自動車部品大手デンソーの中国人技術者が製品情報を持ち出した事件が起きているなど、日本国内でも、ロシアや中国によるスパイ事件は頻発。昭和57年に日立製作所と三菱電機の社員がIBMのコンピューターの基本ソフトを違法に入手しようとしたとして米当局に逮捕されたこともあったが、その後、ハイテク製品で躍進した日本企業は、狙われる立場となった。

デンソー事件を受け、政府は21年に不正競争防止法を改正した。改正前は、スパイに当たる「営業秘密侵害罪」で摘発するには、情報流出が「不正競争」を目的とし、「第三者に関示すること」などの構成要件が必要だった。

ただ、これでは容疑者が外国政府の関係者だった場合などは、不正競争が目的であるかどうかの認定が難しいという問題があった。このため、情報を流出させた人物が不正に利益を得てい
すれば、不正競争を目的としていても犯罪が成立するように改正。また、コピー禁止の書類を無断でコピーしたり、外部に持ち出したりするだけでも刑事罰の対象となる。

経済産業省は「罰則の重さについても最大で懲役 10 年、1000 万円以下の罰金と窃盗罪と同等の厳しさになっている」とし、スパイ行為に制裁をかける抑止効果に期待する。

ただし、違法行為を前提とした政府組織にどこまで効力があるかは疑問だ。今回のように海外の提携企業や子会社での事件には無力だ。さらにルノーでは役員が、報酬を受け取り、情報を流出させた疑いが持たれており、リスク管理の専門家は「情報管理を厳格にするという通常の対策では防げない」と指摘する。

グローバル化が加速する中、日本企業にとっては海外企業との提携は不可欠。提携先の見極めだけでなく、スパイ防止や検査での政府間の連携強化などの対応が求められる。

14.3.3 デンソー事件 (共同通信)

http://www.47news.jp/CN/200704/CN2007041901000280.html

産業スパイ防止へ研究会 デンソー事件受け経産次官
経済産業省の北畑隆生事務次官は 19 日、名古屋市内で記者会見し、大手自動車部品メーカー「デンソー」の製品設計データ持ち出し事件を受け、産業スパイ行為の防止に向けて、省内に研究会を設置する考えを明らかにした。 北畑次官は「日本の製造業の国際競争力は、ノウハウや現場の技能で支えられている。現行の特許制度では防ぎきれない、意図せざる流出を防がなければならない」と述べた。 北畑次官は今回の事件で、罰則規定のある不正競争防止法を適用できなかったことから「それでもいいのかどうか検討しなければならない」と強調。法制化の整備や、企業の合併・買収（M&A）による技術、ノウハウの流出の可能性など、デンソーの協力を得て、幅広く研究を進める考えを示した。
2007/04/19 04:05

【共同通信】

14.3.4 東芝で原発等の設計データの盗難

http://www3.toshiba.co.jp/power/whatsnew/topics/20080521/index_j.htm

2008 年 5 月 21 日
株式会社 東芝電力システム社

当社事業所におけるハードディスク装置の盗難について

5月14日、当社富山事業所にて、データサーバの外付けハードディスク装置（以下 HDD）3台、デスクトップパソコン内蔵の HDD1台が所在不明であることが確認され、5月15日及び19日にそれぞれ所管警察署へ被害届けを提出しました。

当社の調査では、外付け HDD は最終執務者が5月12日携帯した際には現物が確認されており、他者による借用がないことから、12日深夜から14日にかけて盗難にあったものと判断しています。また、デスクトップパソコンは2007年4月27日から故障のため換装管理された部屋に保管されていましたが、内蔵の HDD が取り外されていたことが5月14日に確認されませんでした。

これらの HDD 内に保管されていたデータについて、現在その内容を調査しております。HDD 内には、火力、水力、原子力の発電制御システムの設計データ等が含まれていましたが、全体データの確認には、あと数日を要する見込みです。
当社といたしましては、現在、内容の調査に全力をあげており、早急にその内容の確定を行うとともに、今回のご要請に応じて、今後同様な事態が発生せぬよう再発防止の検討を含めた対応をとってまいります。
関係者の皆様には多大なるご心配をおかけすることとなり、深くお詫び申し上げます。 以上

- 技術流出で表に出るのは氷山の一角
- 金型や技術者の流出も問題
- 中華人民共和国では、裁判所で模倣できる程度の技術は商業秘密でないという鑑定が出たこともある（出典: 馬場, 中国ニセモノ商品, 中央公論新社, 2004）
- すでに手遅れの部分もあるが、技術防衛の強化は必須

14.4 青色 LED 特許係争

- 青色 LED 開発者である中村修二氏が、当時の勤務先である日亜化学工業を相手取り、「相当の対価」などを求めて訴訟を起こした事件
- 当時中村修二氏は事実を大きく歪めたプロパガンダを展開しており、マスメディアも中村修二氏を支持した
- 教科書には中村修二氏側の主張のみが掲載
- 以下、谷, 青色発光ダイオードは誰のものか, 日刊工業新聞社, 2006 に準拠し、より詳しい経緯を説明

14.4.1 経過
1993 年 日亜化学工業が青色 LED を実用製品化 (世界初)
1996 年 日亜, 豊田合成を相手取り特許訴訟
1999 年 中村修二氏, 日亜を退社
2001 年 中村氏, 日亜を提訴
2002 年 日亜と豊田合成の青色 LED 特許訴訟が和解
2003 年 中村氏, 請求額を 200 億円に増額
2004 年 東京地裁, 中村氏の請求通 200 億円の支払いを日亜に命じる判決, 発明の対価を 604 億円と算定
2005 年 中村氏と日亜, 東京高裁で和解, 支払額 8 億 4 千万円, 同年改正特許法施行

14.4.2 東京地裁判決

- 中村の青色 LED 特許は基本特許
- 日亜の青色 LED 市場における優位性は中村の貢献による
- 日亜における青色 LED 開発は中村個人の力によるものであり, 独力で, 独自の発想に基づいて本件特許を発明した
- 金額に関する記述は略

186
東京地裁決の問題点

- 事実誤認に基づく素人裁判
- 青色 LED には先行技術あり (赤崎ら, 1970 年代, 名古屋大学)
- 青色 LED の研究は NTT で継続 (松岡ら), のちに中止
- 中村氏は松岡氏に塩化ガリウム、酸化インジウムの作り方に関する指導を受けている
- 日亜は中村氏に 5 億円を投じ, フロリダ大学への留学を許可した; これは中小企業としては破格の待遇
- 中村氏開発の製造技術は量産に不向きで破棄され, 日亜は別の技術で量産をしているが, 東京地裁の査定金額はこの破棄された技術が量産に使われたと仮定している

14.4.3 東京高裁での和解

- 支払額 8 億 4 千万円
- 中村氏の和解に関するコメント:
 和解金額は全く納得していないが, 代理弁護士の意見に従い, 和解勧告を受け入れた
- 日亜側の和解に関するコメント:
 6 億円という対価は過大で, 納得していないが, 会社の貢献度を 95% と高く評価しており, 早期解決のために和解勧告を受け入れた

日亜の小川社長のコメント

- 青色 LED 発明は多くの人々の努力の賜物
- 青色 LED は一人の天才が仕上げたように世間では流布されているが, 今回の和解で開発に係った若き技術者たちの名誉が回復したという点で意義を感ずる
- 東京地裁の 200 億円支払いを命じた第一審判決については, 中村側の情報操作に覆された面がある。会社を守るために積極的に今後は発言していこうと思っている

中村氏のコメント

- 日本では, もう技術者たちが仕事をする意欲がなくなるのではないか。私があなたが発明した多数の特許を全部売めて, たったの 6 億円。日本は大企業を重んじ、個人の権利を全く無視した国家であったことが証明された。これからは、講演を通じ、理系を目指す人には是非、実力が収入に反映される米国に来るよう勧めたい。

どちらに共感するかは人それぞれ

14.5 企業と (元) 従業員等の特許係争

トヨタ、技術発明の社員と和解 車体プレス特許訴訟

車体表面にしこれができないよう滑らかにするプレス機械や技術を発明したトヨタの男性社員が、対価の一部として会社に 5 億円の支払いを求めた訴訟は 26 日、二審の知財高裁判決 (中野哲弘裁判長) で和解が成立した。
関係者によると、会社側が一定額の支払いを認めたという。具体的な金額を双方とも明らかにしていない。

原告側によると、この男性は1982年の入社以来、プレス機械に関する数々の発明をしてきた。このうち機械の異常を診断する技術などの特許51件の対価は、最大で約3千億円に上ると主張。「トヨタは、他社とのライセンス契約に基づく実施料で多額の利益を得てきた」として2007年に提訴した。

09年3月の一審東京地裁判決が「トヨタは社内規定に基づく対価を既に支払っている」などとして請求を棄却したため、男性が控訴していた。

男性は「和解が成立してよかった。今後は職務発明の特許が公正に使用されることを望む」と話している。

トヨタ広報部は「和解が成立したのは事実だが、詳細は話せない」としている。

2011/01/26 22:01【共同通信】

ニュースリリース
2009年2月26日
キャノン株式会社

職務発明訴訟控訴審判決について

当社元従業員が、在職中の職務発明に対する対価の一部として、当社に10億円の支払いを求めていた訴訟の控訴審判決が、本日、知的財産高等裁判所で言い渡されました。控訴審判決は、当社に対し約6,956万円（「相当の対価」5,626万円及びそれに対する利息）の支払いを命じ、特許法35条に基づく対価は既に支払い済みであるとの当社の主張はしりぞけられました。

当社の発明規程は、労働協約に依拠し、労使協議の上制定・改正されたものであり、その内容も明確な基準に基づいて発明に対する公正な評価を行うものであって、いわば2004年に改正された新特許法35条の趣旨を先取りしてきたものです。このような規程に基づき本件職務発明に対する対価は支払い済みであることを、当社は一貫して主張してまいりましたが、今回の控訴審判決で当社の主張が受け入れられなかったことは、誠に遺憾です。

今後の対応につきましては、判決内容を検討の上、判断いたします。

裁判所http://www.courts.go.jp/判例検索システム
知的財産裁判例権利種別が特許権, 全文に「職務発明」を含むもの

・最も最近の判決：
 - 平成20(ワ)22178 特許権承継対価請求事件 特許権 民事訴訟 平成23年01月28日 東京地方裁判所
 - 判例がどんなものかを知ってもらうため, 原文(pdf)を画面に出す

188
14.6 職務発明と特許権

- 職務発明は特許法で定義されている
- 特許法についてはエンジニアリングデザイン講義で取り扱うが、特許法の目的と職務発明の定義のみこの講義で述べる

14.6.1 特許法

特許法
（昭和三十四年四月十三日法律第百二十号）

最終改正：平成二〇年四月一八日法律第十六号

第一章 総則
（目的）
第一条 この法律は、発明の保護及び利用を図ることにより、発明を奨励し、もって産業の発達に寄与することを目的とする。

（職務発明）
第三十五条 使用者、法人、国又は地方公共団体（以下「使用者等」という。）は、従業者、法人の役員、国家公務員又は地方公務員（以下「従業者等」という。）がその性質上当該使用者等の業務範囲に属し、かつ、その発明をするに至った行為がその使用者等における従業者等の現在又は過去の職務に属する発明（以下「職務発明」という。）について特許を受けたとき、又は職務発明について特許を受ける権利を承継した者がその発明について特許を受けたときは、その特許権について通常実施権を有する。

2 従業者等がした発明については、その発明が職務発明である場合を除き、あらかじめ使用者等に特許を受ける権利若しくは特許権を承継させ又は使用者等のため仮専用実施権若しくは専用実施権を設定することを定めた契約、勤務規則その他の定めの条項は、無効とする。

3 従業者等は、契約、勤務規則その他の定めにより職務発明について使用者等に特許を受ける権利若しくは特許権を承継させ、若しくは使用者等のため仮専用実施権を設定したとき、又は契約、勤務規則その他の定めにより職務発明について使用者等のため仮専用実施権を設定した場合において、第三十四条の二第二項の規定により専用実施権が設定されたものとみなされたときは、相当の対価の支払を受けける権利を有する。

4 契約、勤務規則その他の定めにおいて前項の対価について定める場合には、対価を決定するための基準の策定に際して使用者等と従業者等との間で行われる協議の状況、策定された当該基準の開示の状況、対価の額の算定について行われる従業者等からの意見の聞き取の状況等を考慮して、その定めたところにより対価を支払うことが不適当と認められるものであってはならない。

5 前項の対価についての定めがない場合又はその定めたところにより対価を支払うことが同項の規定により不合理と認められる場合には、第三項の対価の額は、その発明により使用者等が受けるべき利益の額、その発明に関連して使用者等が行う負担、貢献及び従業者等の処遇その他の事情を考慮して定めなければならない。

- 問題になるのは実施権 (特許は実施されなければ無意味)
- 従業者等の通常業務の範囲内での (過去または現在の) 発明は職務発明
- 職務発明に関して成立した特許の実施権を持つのは使用者等 (第1項)
職務発明以外の発明は従業者等のもの、これに反する契約等は無効 (第2項)
発明には相当の対価が必要 (第3項)
第4, 5項に対価の額に関する記述

以下、知的財産戦略研究会、100万人の職務発明、オーム社、2005年に掲載して説明

14.6.2 使用者の職務発明への対応
職務発明の譲渡を受けない：
- メリット: 対価不要、職務発明訴訟のリスク低減
- デメリット: 従業者等のモチベーション低下、企業の知的財産が増えない

労働契約に職務発明規定を設定せず、従業者が発明をする度に契約書により発明の譲渡を受ける
- メリット: 職務発明規定を整備する手間が省ける (特許件数が少ない企業では有効な戦略)
- デメリット: 契約に手間がかかり、また契約が成立しないリスクがある

職務発明規定を設定する：
- メリット: 知的財産の強化
- デメリット: 規定の整備に手間がかかる、訴訟のリスク発生

14.6.3 職務発明規定
職務発明規定は企業等によって様々だが、一般に以下の事項が含まれる
- 予約承継: 職務発明に基づく権利は会社が継承するという規定 (職務発明以外には無効), 企業等にとって不要なものは承継しない旨の規定を含むのが一般的
- 発明の届出義務: 遅滞なく従業者等に届出をさせるための規定
- 職務発明の認定: 具体的かつ認定の手続きを定める
- 補償: 対価等の規定を詳細に定める
- その他: 入社前、退社後、出向中の発明、共同発明の取り扱いなど
- 職務発明への対価は企業にとってはリスク
- 研究への投資の段階では事業化の可否は不明、無駄になる投資も多い

14.7 大学の特許
- 国立大学法人: 発明は原則として機関帰属
- 公立大学: 地方自治体等によって様々
- 私立大学: 大学によって様々
14.7.1 TLO

以下の記述の典拠は経済産業省のページ
http://www.meti.go.jp/policy/innovation_corp/tlo.htm

- Technology Licensing Organization（技術移転機関）の略称
- 大学の研究者の研究成果を特許化しそのを企業へ技術移転する法人、産と学の仲介役

1. 特許料等の減免
2. 国が委託した研究・開発の成果に係る特許権等の移転・実施許諾に際し国の承認を必要としない
3. 国立大学法人からの出資
4. 信託業の実施
5. 債務保証
6. 技術移転先企業への出資

大学等における技術に関する研究成果の民間事業者の移転の促進に関する法律
（平成十年五月六日法律第五十二号） 最終改正：平成十七年七月二日法律第八七号

第一条 この法律は、大学、高等専門学校、大学共同利用機関及び国の試験研究機関等における
技術に関する研究成果の民間事業者への移転の促進を図るための措置を講ずることにより、新
たな事業分野の開拓及び産業の技術の向上並びに大学、高等専門学校、大学共同利用機関及び
国の試験研究機関等における研究活動の活性化を図り、もって我が国産業構造の転換の円滑化、
国民経済の健全な発展及び学術の進展に寄与することを目的とする。

![グラフ]

大学・承認 TLO の特許出願件数の推移
出典： 産業財産権の現状と課題～125 周年を迎えた産業財産権制度～特許行政年次報告書 2010 年版
http://www.jpo.go.jp/shiryou/toushin/nenji/nenpou2010_index.htm (以下同じ)
14.7.2 担当者コメント

- 特許出願件数は独立行政法人化以降激増したが、最近は遅減傾向
- 特許実施件数は激増しているが、特許収入は横這い
- 結果として特許1件あたりの平均収入は激減、特許維持に費用がかかることを考えると、これは問題
- 特許が学術論文と同様に研究業績として評価されるようになり、結果として需特許が増えたのではなかいか
- 製造業 (技術系) の技術者に大学の特許の話をすると失笑される; ほぼ無価値という認識らしい
- 国全体では、特許申請件数は減少傾向

14.7.3 承認・認定 TLO 一覧

出典: 特許庁のページ http://www.jpo.go.jp/kanren/tlo.htm
承認 TLO42 機関、認定 TLO3 機関 (2011 年 4 月 5 日現在)
<table>
<thead>
<tr>
<th>TLO名</th>
<th>関連大学等</th>
</tr>
</thead>
<tbody>
<tr>
<td>(株) 東京大学 TLO(CASTI)</td>
<td>東京大学</td>
</tr>
<tr>
<td>関西ティー・エル・オー (株)</td>
<td>関西地域 (京都大・立命館等)</td>
</tr>
<tr>
<td>(株) 東北テクノアーチ</td>
<td>東北大学等</td>
</tr>
<tr>
<td>学校法人 日本大学 (産官学連携知財センター)</td>
<td>日本大学</td>
</tr>
<tr>
<td>学校法人 早稲田大学 (産学官研究推進センター)</td>
<td>早稲田大学</td>
</tr>
<tr>
<td>学校法人 慶應義塾大学 (知的資産センター)</td>
<td>慶應義塾大学</td>
</tr>
<tr>
<td>(有) 山口ティー・エル・オー</td>
<td>山口大学</td>
</tr>
<tr>
<td>(財) 新産業創造研究機構 (TLOひょうご)</td>
<td>兵庫県下の大学等 (神戸大・関西学院大等)</td>
</tr>
<tr>
<td>(財) 名古屋産業科学研究所 (中部 TLO)</td>
<td>名古屋大学, 岐阜大学等</td>
</tr>
<tr>
<td>(株) 産学連携機構九州 (九大 TLO)</td>
<td>九州大学</td>
</tr>
<tr>
<td>学校法人 東京電機大学 (産官学交流センター)</td>
<td>東京電機大学</td>
</tr>
<tr>
<td>タマティーエルオー (株)</td>
<td>工学院大学, 東洋大学, 首都大学東京等</td>
</tr>
<tr>
<td>学校法人 明治大学 (知的資産センター)</td>
<td>明治大学</td>
</tr>
<tr>
<td>よこはまティーエルオー (株)</td>
<td>横浜国立大学, 横浜市立大学等</td>
</tr>
<tr>
<td>TLO名</td>
<td>関連大学等</td>
</tr>
<tr>
<td>(株) テクノネットワーク四国 (四国 TLO)</td>
<td>四国地域の大学 (徳島大・香川大・愛媛大・高知大等)</td>
</tr>
<tr>
<td>(財) 生産技術研究奨励会</td>
<td>東京大学生産技術研究所</td>
</tr>
<tr>
<td>農工大ティー・エル・オー (株)</td>
<td>東京農工大学</td>
</tr>
<tr>
<td>(株) 新潟 TLO</td>
<td>新潟大学等</td>
</tr>
<tr>
<td>(財) 北九州産業学術推進機構</td>
<td>九州工業大学等</td>
</tr>
<tr>
<td>(株) 三重ティーエルオー</td>
<td>三重大学等</td>
</tr>
<tr>
<td>(有) 金沢大学ティ・エル・オー</td>
<td>金沢大学, 石川工業高等専門学校</td>
</tr>
<tr>
<td>(株) キャンパスクリエイト</td>
<td>電気通信大学</td>
</tr>
<tr>
<td>学校法人 日本医科大学知的財産推進センター</td>
<td>日本医科大学, 日本獣医生命科学大学</td>
</tr>
<tr>
<td>(株) 鹿児島 TLO</td>
<td>鹿児島大学等</td>
</tr>
<tr>
<td>(株) 信州 TLO</td>
<td>信州大学, 長野工業高等専門学校</td>
</tr>
<tr>
<td>(株) みやざき TLO</td>
<td>宮崎大学等</td>
</tr>
<tr>
<td>(有) 大分 TLO</td>
<td>大分大学等</td>
</tr>
<tr>
<td>学校法人 東京理科大学 (科学技術交流センター)</td>
<td>東京理科大学等</td>
</tr>
<tr>
<td>(財) 岡山県産業振興財団 (岡山 TLO)</td>
<td>岡山大学等</td>
</tr>
<tr>
<td>佐賀大学 TLO</td>
<td>佐賀大学</td>
</tr>
<tr>
<td>TLO名</td>
<td>関連大学等</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>(株) 豊橋キャンパスイノベーション (とよはし TLO)</td>
<td>豊橋技術科学大学</td>
</tr>
<tr>
<td>千葉大学産学連携・知的財産機構</td>
<td>千葉大学</td>
</tr>
<tr>
<td>東京工業大学産学連携推進本部</td>
<td>東京工業大学</td>
</tr>
<tr>
<td>富山大学知的財産本部</td>
<td>富山大学</td>
</tr>
<tr>
<td>群馬大学研究・知的財産戦略本部</td>
<td>群馬大学</td>
</tr>
<tr>
<td>奈良先端科学技術大学院大学産官学連携推進本部 TLO</td>
<td>奈良先端科学技術大学院大学</td>
</tr>
<tr>
<td>東海大学産学官連携センター</td>
<td>東海大学</td>
</tr>
<tr>
<td>東京医科歯科大学知的財産本部技術移転センター</td>
<td>東京医科歯科大学</td>
</tr>
<tr>
<td>山梨大学産学官連携・研究推進機構産学官連携・研究推進部</td>
<td>山梨大学</td>
</tr>
<tr>
<td>神戸大学支援 (同)</td>
<td>神戸大学</td>
</tr>
<tr>
<td>北海道大学産学連携本部 TLO 部門</td>
<td>北海道大学等</td>
</tr>
<tr>
<td>静岡技術移転合同会社</td>
<td>静岡大学等</td>
</tr>
</tbody>
</table>

(財) ヒューマンサイエンス振興財団	厚生労働省所管の研究機関等
(社) 農林水産技術情報協会	農林水産省所管の研究機関等
(財) テレコム先端技術研究支援センター	(独) 情報通信研究機構

14.7.4 沖縄は...

- 承認・認定 TLO はない
- 琉球大学産学官連携推進機構 http://www.iicc.u-ryukyu.ac.jp/ は活動中
- 琉球大学が保有する特許、実用新案の一覧: http://www.u-ryukyu.ac.jp/coalition/chizai/chizai-list.html

14.8 起業

- 教科書では起業の自由がやけに強調されている: これは著者がコンサルタント業を営んでいる関係だと思われる
- 起業には、財務、会社法などの知識が必要: 日本ではベンチャービジネスの成功率は著しく低い; 熊本経済同友会のページ http://www.kuma-doyukai.com/it_seminar/2006/2006-03.html に 0.3%程度が通説という記述がある
- ストックオプション (自社株購入権, 役員・従業員などがあらかじめ決められた価格で自社株を購入できる権利 (桜井・須田, 財務会計・入門, 第 8 版, 有斐閣, 2011) によって報酬を受け取るという選択肢もある
- それ以外に共同経営という選択肢もある
14.9 課題
教科書 [2], 事例 VII(研究成果は誰のものか) を読み, 57 ページ(排他的独占権の功罪) について考え, 見解を述べよ. まわりの人と議論してよいが, 自分の言葉で考えをまとめること.
15 技術者の国際関係

15.1 前回の課題 (研究成果は誰のものか)

15.1.1 昼間主

- 排他的独占権には功罪があるという意見が多かった
- 研究成果は開発者と企業が共同所有するのがよい
- 特許は必要だと思うが利用者から見るとない方がよい
- 研究意欲がなくなる理由は金以外もあると思う
- 排他的独占権により得た金銭で開発のサイクルを回すのがよい
- 排他的独占権は必要だが権利の配分が大変
- 排他的独占権により技術の利用・進歩が阻害されるのでは
- 開発者が評価され相応の対価が与えられるのは当然・妥当
- 報酬と利用しやすさのバランスが重要
- 開発者の権利は理解するが研究成果は無償で提供してほしい
- 公共の福祉に適合するよう排他的独占権を制限すべき
- 利用者が開発者に金を払うのは当然では
- 排他的独占権を認めないことで研究者が減るのは困る
- お金より大事なものがあると思う
- 技術の管理という観点から排他的独占権は有用
- 特許の有効期限を短くした方が良いのでは
- 中小企業・ベンチャー企業を守るため、アイデアを守るため、技術立国のために排他的独占権は必要
- 排他的独占権のため難病治療が阻害されるのは問題
- 安い価格で提供すべき (!)
- 研究者個人の価値観に任せればよいのは (!)
- 研究とは公共の福祉のためのもの、無償公開は当然 (!)
- 医療・エネルギー分野の研究者は公共のための奉仕すべきであり排他的独占権は認めるべきでない (!)
- 開発者に対する感謝の気持ちがあれば良いのでは (!)
- 難病治療薬などは国が買えばよい (!)
- 出願した者が権利を得てしまうのは不便 (!)
15.1.2 夜間主

- 開発者の利益と公益のバランスが重要
- 排他的独占権は当然
- 排他的独占権は権力につながるから良くない
- 研究成果を無償で使わせるか否かは開発者が判断してよいのは
- 技術者のモチベーションを保つためには排他的独占権は必要
- お金が欲しい人には相応の報酬が支払われるようにすべき
- 難病の治療を受けることが「患者の当然の権利」という考え方には無理があるのでは
- 公益性が高いものは安値にすべき
- 特許に重要度に応じたレベルを付けたらどうか
 ⇒ すでにレベルが付けられている: 特許と実用新案はレベルの差, その他, 意匠, 商標, 著作権など, いろいろな知的財産権がある
- 公益性のあるものには特許取得を認めるべきでない
- 発明者も他人に依存しているので発明者は評価されるべきだが排他的独占権は認めるべきでない

15.2 コメント欄から

- 親の借金を相続放棄した場合, 誰が支払うのか？
 - 負債がある場合, 資産は (あれば) 債権者に差し押さえられる. 不足分は回収できない (貸した側の損). なお, 保証人になっていた場合はこの限りではない.
15.3 地域統合，2国間協定

- 教科書1: 223ページから229ページにかけて, EUを賛美し, 東アジア共同体を熱望する立場からの記述
- EUは通貨危機で致命的ダメージ, ギリシャは破綻寸前, スペイン等でも問題
- 中華人民共和国の拡大主義の影響で南シナ海では紛争続発

ユーロ圏解体は不可避＝政治同盟欠如が致命的 ローソン元英蔵相
【ロンドン時事】英国でサッチャー政権時代の経済政策を支えたナイジェル・ローソン元蔵相(80)は22日、時事通信とのインタビューに応じ、深刻化する欧州債務危機に関し、ギリシャのユーロ圏離脱は不可避で、これがユーロ圏解体の引き金になるとの見解を示した。また、政治同盟の欠如という致命的な欠陥を抱えるユーロ圏では、あらゆる危機対策が「無駄」と述べた。

ローソン氏は「欧州通貨同盟（ユーロ圏）の危機は予測可能であり、実際予想されていた」と指摘。「私は蔵相時代の1989年1月、『完全な政治同盟のない通貨同盟はおそらく機能できず、欧州市民が望まないため政治同盟も実現しないだろう』と講演で言及した」と振り返った。そして、政治同盟のないままユーロを誕生させたことについて、「非常に無責任だった」と痛烈に批判した。

(2012/05/23-16:49) ●

出典:
http://www.jiji.com/jc/zc?key=%a5%ed%a1%bc%a5%f3%20%a5%e6%a1%bc%a5%ed&k=201205/2012052300649

15.4 標準と標準化

以下の記述の典拠はおおむね以下の通り:

- 日本工業標準調査会のページ http://www.jisc.go.jp/
- 和泉, 標準のすべて, 経済産業調査会, 2009.

15.4.1 歴史的背景

- 単3電池: 形や大きさ, 電圧は一定, 電気製品はどのメーカーの電池を入れても同じように動く
- これは、製品が一定の標準 (規格) にしたがって作られているから
- 今日では「どのメーカーの製品や部品も同じように使える」とは当然
- 歴史的には上記は当然ではない
互換性部品

- 大量生産時代以前には、製品は個別に調整されるもの
- 標準の嚆矢は「互換性部品」（18世紀、フランス）、同一の形の部品を大量に作り、共通の部品を使って製品を組み立てるという発想
- 設計図にしたがって製品を作れれば部品も共通になると考えながら、設計図を作るという発想自体、昔は当然ではなかった
- 互換性部品を使った製品の組み立てができるためには、部品に一定の精度が必要

互換性部品から標準への

- 互換性部品は「同種の製品の部品が相互に流用可能」という発想に基づくもの
- 異なる製品間で部品が流用できれば、効率はさらに高まる ⇒ 標準化あるいは規格化の考え

15.4.2 標準化

- 標準化:
 - 存在する問題に対して、適切な秩序を得ることを目的として、誰もが共通利用することのできる、また繰り返し使用するための規定を確立すること（奈良、国際標準化入門、日本規格協会、2004）
 - 自由に配置すれば、多様化、複雑化、無秩序化する事柄を少数化、単純化、秩序化すること
 (日本工業標準調査会 http://www.jisc.go.jp/std/index.html)
- 英単語 standardization の訳、規格化ともいう
- 標準化の結果得られるものを standard という
- standard は標準、基準、規格などと訳されるが
- 訳語の使い分けは不明確（ほぼ同義で使われる）
- 日本機械学会には 標準・規格センターというページ
 http://www.jsme.or.jp/std/standards.html
- 技術用語の標準は規格とほぼ同義、日常用語とは意味が大きく異なる

15.4.3 規格

- 各種製品についての技術的事項（原材料・種類・寸法・成分・性能など）を統一して定めた標準。ドイツの DIN や日本の JIS など。標準規格。standard (日本語大辞典第 2 版)
- 工業製品などの品質・大きさ・形状などについて定められた標準。
 規格化: 規格 (標準) に合わせて統一すること (大辞林第 2 版)
- 標準化と規格化は異なった意味合い (ややこしい)
15.4.4 工業標準化の意義

この項の記述は日本工業標準調査会のページ http://www.jisc.go.jp/std/index.html に準拠

自由に放置すれば、多様化、複雑化、無秩序化してしまう「もの」や「事柄」について、経済・社会活動の利便性の確保 (互換性の確保等)、生産の効率化 (品種削減を通じての量産化等)、公正性を確保 (消費者の利益の確保、取引の単純化等)、技術進歩の促進 (新しい知識の創造や新技術の開発、普及の支援等)、安全や健康の保持、環境の保全等のそれぞれの観点から、技術文書として国レベルの「規格」を制定し、これを全国的に「統一」又は「単純化」すること

- 製品の適切な品質の設定
- 製品情報の提供
- 技術の普及
- 生産効率の向上
- 競争環境の整備
- 一定の社会的目標 (省エネルギーなど) に企業や消費者を誘導
- 技術情報の伝達を容易にする
- 貿易の促進 (WTO と関連、後述)

15.4.5 日本の標準化の歴史

以下の記述は 和泉、標準のすべて、経済産業調査会、2009 による

- 10 世紀、延喜式 (朝廷が定める法令) に和紙、釘などの規格
- 江戸時代の和紙: 地域によって異なる規格
- 明治時代に工业化に伴い国際標準化に取り組む
- 1906 年、International Electrotechnical Commission (IEC) の設立会議に参加 (参加国は USA、オーストラリア、ベルギー、カナダ、フランス、ドイツ、イギリス、オランダ、ハンガリー、イタリア、スイス、スペイン、日本)
- 1910 年に IEC 加盟
1913 上水協議会設立（水道用鉄管の標準化）
1916 鉄鋼業調査会設立
1921 工業品規格統一調査会設立（日本工業標準調査会（JISC）の前身）、当時の規格の名称は日本標準規格（JES）
1926 International Federation of the National Standardizing Associations (ISA) 設立（International Organization for Standardization (ISO) の前身）、日本からは工業品規格統一調査会が参加
1939 臨時日本標準規格（臨 JES）、軍需への対応
1945 戦
1946 工業標準調査会設立
1949 工業標準化法施行、日本工業規格（JIS）誕生
1950 農林物資の規格化及び品質表示の適正化に関する法律、日本農林規格（JAS）
1952 日本、ISO 加盟
1953 日本、IEC 再加盟
1980 GATT スタンダードコード発効、JIS と国際規格の整合性を取る作業が進む
1995 WTO 貿易の技術的障害に関する協定発効、上記作業がさらに進む

GATT スタンダードコード

典拠：浅田、ガット・スタンダードコードとわが国の工業標準化事業、日本機械学会誌、Vol. 85、No. 760、pp. 65–74、1982

各国独自に、あるいは各国間で行われているスタンダードの制定・運用の統一したルールを作成することにより、国際貿易の円滑な拡大に寄与しうる点に着目し、各国がスタンダードを制定、運用する場合に、国際規格の尊重、制定運用の透明性確保、内外無差別待遇の付与などを目的としたもの。

貿易の技術的障害に関する協定 経済産業省のページより

前文
第一条 一般規定
(強制規格及び任意規格)
第二条 強制規格の中央政府機関による立案、制定及び適用
第三条 強制規格の地方政府機関及び非政府機関による立案、制定及び適用
第四条 任意規格の立案、制定及び適用
(強制規格及び任意規格への適合)
第五条 中央政府機関による適合性評価手続
第六条 適合性評価の中央政府機関による承認
第七条 地方政府機関による適合性評価手続
第八条 非政府機関による適合性評価手続
第九条 国際制度及び地域制度
(情報及び援助)
第十条 強制規格、任意規格及び適合性評価手続に関する情報
第十一條 他の加盟国に対する技術援助
第十二條 開発途上加盟国に対する特別のかつ異なる待遇
(機関, 協議及び紛争解決)
第十三條 貿易の技術的障害に関する委員会
第十四條 協議及び紛争解決
(最終規定)
第十五條 最終規定
附属書一 この協定のための用語及びその定義
附属書二 技術専門家部会
附属書三 任意規格の立案, 制定及び適用のための適正実施規準

- 貿易の技術的障害に関する協定は世界貿易機関を設立するマラケシュ協定の一部
- 経済産業省のページで全文を読める
- 興味がある者は経済産業省のページを参照すること (かなりの分量があるので配付しない)

15.5 規格
15.5.1 規格の分類

- 国際規格: 世界各国が共通に利用できる規格
- 地域規格: 政治・経済上特定の地域 (EU など) で利用できる規格
- 国家規格: 一国内で使う規格
- 地方規格: 一国内のある地方で使う規格

15.5.2 国際規格の分類

- デジュール・スタンダード (de jure standard) 法的強制力を持たせることのできる規格
- デファクト・スタンダード (de fact standard) デジュール・スタンダード以外のすべて

15.5.3 国家規格の分類

- 独占引用規格: 規格の中に示された仕様や要求事項を完全に満たすように法律等が定められているもの
- 指示引用規格: 独占引用規格以外
15.5.4 代表的な国際規格

以下、三菱重工のページを参考にして取捨選択

ISO International Organization for Standardization (国際標準化機構): 各国の代表的標準化機関から成る
国際標準化機関、1947年に活動開始、電気及び電子技術分野を除く全産業分野（鉱工業、農業、医薬品
等）に関する国際規格の作成を行う
http://www.iso.org/iso/home.html

IEC International Electrotechnical Commission(国際電気標準会議): 各国の代表的標準化機関から成る国
際標準化機関、1906年設立、電気及び電子技術分野の国際規格の作成を行う
http://www.iec.ch/

ITU International Telecommunication Union(国際電気通信連合): 電子通信分野の標準化と技術援助活動
を主目的とした国連専門機関のひとつ
http://www.itu.int/

15.5.5 代表的な地域規格

EN European Standards/European Norm(欧州規格): 国家規格の地位を与えられ、競合する国家規格を廃
止することによって、国家水準での実施の義務を負う CEN/CENELEC 規格

CEN European Committee for Standardization,
http://www.cen.eu/

CENELEC European Committee for Electrotechnical Standardization,
http://www.cenelec.eu/

15.5.6 代表的な官庁規格

MIL Military Specifications and Standards(米国軍用規格/米軍仕様書)
http://dodssp.daps.dla.mil/

FS Federal Specifications and Standards(米国連邦仕様書・規格)
http://apps.fas.gsa.gov/pub/fedspecs/

15.5.7 代表的な団体規格

ASME American Society of Mechanical Engineers (米国機械学会),
www.asme.org/

ASTM American Society for Testing and Materials (米国材料試験協会),
www.astm.org/

EIA Electronic Industries Alliance (米国電子機械工業会),
www.ei.org/

IEEE Institute of Electrical and Electronics Engineers (米国電気・電子技術者協会),
www.ieee.org/
SAE Society of Automotive Engineers (米国自動車技術会),
www.sae.org/

VDE Verband Deutscher Elektrotechniker (ドイツ電気技術者協会),
http://www.vde.com/

15.5.8 国家規格の例

- ANSI: アメリカ合衆国
- AS: オーストラリア
- BS: 英国
- CS: カナダ
- DIN: ドイツ
- DS: デンマーク
- GB: 中華人民共和国
- IS: インド
- JIS: 日本
- KS: 韓国
- NEN: オランダ
- NF: フランス
- NS: ノルウェー
- NZS: ニュージーランド
- PS: フィリピン
- SABS: 南アフリカ
- SFS: フィンランド
- SIS: スウェーデン
- SNV: スイス
- UNE: スペイン
- UNI: イタリア
15.6 標準と企業の戦略

- 以下の2種類の戦略がありうる:
 - 標準化戦略: 業界内で積極的に標準化を推進する戦略
 - 非標準化戦略: まったく標準化を進めない戦略

- 標準化戦略:
 - メリット: 市場の拡大が期待できる
 - デメリット: シェア低下, 価格競争激化

- 非標準化戦略:
 - メリット: 市場を占有できる
 - デメリット: 普及しない可能性がある

- 貿易の技術的障害に関する協定発効の影響:
 - 国際規格に準拠しないと商機を失うリスク
 - 自社標準が国際標準に採用されれば, 各国の国内標準にもなるので, ビジネスにおいて優位に立てる可能性

- 標準を制するものはビジネスを制するという要素があるので, 国や企業が標準策定において優位性を確保するための競争は熾烈

15.7 ISO規格の制定手順

以下の典拠: 日本工業標準調査会のページ http://www.jisc.go.jp/international/iso-prcs.html

1. New Work Item Proposal(NP, 新作業項目) の提案
2. Working Drafts(WD, 作業原案) の作成
3. Committee Drafts(CD, 委員会原案) の作成
4. Draft International Standard(DIS, 国際規格案) の照会及び策定
5. Final Draft International Standards(FDIS, 最終国際規格案) の策定
6. 国際規格の発行

第1段階: New Work Item Proposal 提案

- 各国加盟機関, Technical Committee(TC, 専門委員会)/Subcommittee(SC, 分科委員会) の幹事などが新たな規格の策定, 現行規格の改定を提案
- 中央事務局は各国に提案に賛成か反対かを3ヶ月以内に投票するよう依頼
- 投票結果が次を満たす時に提案は承認:
 - 投票した TC/SC の P(積極的参加) メンバーの過半数が賛成すること
 - 5ヶ国以上の P メンバーが審議に参加すること

205
第２段階: Working Drafts の作成

- 第一次 WD の入手 (登録時に原案がない場合、登録から6ヶ月以内)
- 提案の承認後、TC/SC の WG(作業グループ) において WD の策定に当たる専門家を TC/SC の幹事が P メンバーと協議して任命
- 幹事より任命された専門家は WG において WD を検討作成
- その上で、専門家は NP 提案承認後6ヶ月以内に TC/SC に WD を提出
- 委員会はこの最終作業原案を Publicly Avaiable Specification(PAS、公開仕様書)として発行可能 (登録から12ヶ月以内)

第３段階: Committee Drafts の作成

- WD は CD 案として登録され TC/SC の P メンバーに意見照会のため回付
- P メンバーの意見を踏まえ幹事を中心に CD 案を検討、必要に応じて修正
- 総会でのコンセンサス又は、P メンバーの投票にかかって 2/3 以上の賛成を得た場合に CD が成立
- その上で、CD は DIS として登録
- 委員会は技術的問題が解決できない場合、Technical Specification(TS、技術仕様書)として発行可能

第４段階: Draft International Standard の照会及び策定

- 登録された DIS は TC/SC メンバーだけでなく全てのメンバー国に投票のため回付 (投票期間5ヶ月間) (登録から24ヶ月以内)
- DIS は次を満たす時に承認:
 - 投票した TC/SC の P メンバーの 2/3 以上が賛成
 - 反対が投票総数の 1/4 以下 (DIS が否決された場合、TC/SC の幹事が中心となり DIS を修正し再投票)
- 反対票が投じられなかった場合は、直接発行を進める。
- その上で、DIS は FDIS として登録

第５段階: Final Draft International Standards の策定

- 中央事務局が登録された FDIS を全てのメンバー国に投票のため回付 (投票期間2ヶ月。この段階で規格内容の修正は認められず。) (登録から33ヶ月以内)
- FDIS は次を満たす時に承認され国際規格として成立
 - 投票した TC/SC の P メンバーの 2/3 以上が賛成
 - 反対が投票総数の 1/4 以下
- FDIS が承認されなかった場合: 修正原案を CD, DIS, FDIS に再提出、TS を発行、プロジェクト取り消し

206
第6段階：国際規格の発行

- FDIS の承認後、正式に国際規格として発行（発行期限は NP 提案承認から36ヶ月以内）

15.7.1 迅速工程

各国で一定の実績のある規格が TC/SC メンバー又は ISO と提携関係にある国際的標準化機関から ISO
事務総長に国際規格提案された場合、第1段階を実施し条件が満たされれば、第2、第3段階の作業手続を省
いて DIS 登録される

15.8 IEC 規格の制定手順

- ISO 規格とほぼ同様
- 詳細は日本工業標準調査会のページ
 http://www.jisc.go.jp/international/iec-prcs.html

15.9 ISO マネジメントシステム

- ISO 9000 ファミリー：品質マネジメントシステム (Quality Management System, QMS), 国内では
 JIS として発行
- ISO 14000 ファミリー：環境マネジメントシステム (Environmental Management System, EMS), 国
 内では JIS として発行
- ISO 13485: 医療機器-品質マネジメントシステム-規制目的のための要求事項 (JISQ 13485)
- ISO 22000 食品安全マネジメントシステム-フードチェーンの組織に対する要求事項
- ISO/IEC 27001: 情報技術-セキュリティ技術-情報セキュリティマネジメントシステム-要求事項 (JISQ
 27001)
- ISO/IEC 20000-1: 情報技術-サービスマネジメント-第1部:仕様 (JISQ 20000-1)
- ISO 50001: エネルギーマネジメントシステム-要求事項及び利用の手引

15.10 環境規制

- 国際的に、有害排出物に関する規制を強化する方向
- 特にヨーロッパで顕著
- グローバル企業は、商品を展開する地域における環境規制をすべて考慮しないと事業が展開できない
15.10.1 RoHS 指令

典拠： 松浦、林、瀧山監修、RoHS 研究会編著、Q&A でよくわかることが知りたい世界の RoHS 法、日刊工業新聞社、2011

- もともとは EU の法令
- RoHS は Restriction of Hazardous Substance の略
- 有害物質を含有した製品を市場に入れないための指令
- 指定有害物質: 鉛, 水銀, カドミウム, 6 倍クロム, ポリ臭化ビフェニル, ポリ臭化ジフェニルエーテル
- 中華人民共和国, USA, 日本, 韓国, タイ, インドも独自の RoHS 法を持つ

15.10.2 WEEE 指令

- EU の法令
- WEEE は Waste Electrical and Electronic Equipment の略
- 廃電気電子機器を予防 (削減) するため, 最終処分量を減らすことを目標に電気電子機器の再利用, 構成部品などの再生, リサイクルを推進する要求

15.10.3 ELV 指令

- EU の法令
- ELV は end-of life vehicles の略
- 廃自動車を防止し, 廃棄物の削減のための廃自動車とその部品の再利用, リサイクル, ならびに他の形の再生を目指し, また自動車のライフサイクルに関わる従業者, 特に廃棄自動車の処理に関連する従業者の全ての環境的業績の改善を目的とする手段を策定する

15.10.4 玩具指令

- EU の法令
- 玩具の安全性や化学物質の含有に関する規制

15.10.5 ErP 指令

- EU の法令
- ErP は Energy-related Products の略
- 境内での自由移動を確実にする目的でエネルギー関連製品に対する共同体エコデザイン要求を設定する枠組を確立し, 上枠 / サービスのため実施措置によりエネルギー関連製品が実行しなければならない要求事項を規定する
15.10.6 包装材指令

- EUの法令
- 回収、リサイクル率の達成と包装材料の規制

15.10.7 REACH 規則

典拠：外務省のページ [http://www.mofa.go.jp/mofaj/area/eu/reach_0602.html]

- EUの法令, 2007年施行
- REACHはRegistration Evaluation Authorisation and Restriction of Chemicalsの略
- 既存化学物質と新規化学物質扱いをほぼ同等に変更
- これまでは政府が実施していたリスク評価を事業者の義務に変更
- 流通経路を通じた化学物質の安全性や取扱いに関する情報の共有を双方向で強化
- 成型品に含まれる化学物質の有無や用途についても情報の把握を要求
15.11 課題

配付資料は国会事故調 http://naiic.go.jp/による福島第一原発事故の報告書のダイジェスト版である。これを読み、考えるところを述べよ。分量が多いので、興味があるところのみの拾い読みで構わない（通読しなくてもよい）。まわりの人と議論してよいが、自分の言葉で考えをまとめること。

7月23日に政府事故調査・検証委員会の報告書も公表されているが http://www.kantei.go.jp/jp/noda/actions/201207/23kenshou.html, こちらは典型的な「後知恵型」の報告書であり、国会事故調の報告書と比較して（後発にもかかわらず）優れているとは言い難いので、この講義では取り上げない。