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Further results on the uniform observability of
discrete-time nonlinear systems

Shigeru Hanba, Member, IEEE

Abstract— In this technical note, the relation between notions
of uniform observability of discrete-time nonlinear systems based
on injectivity of an observation map (window), the full-rankness
of its Jacobian, and a K-function is investigated. It is proved that
a system is uniformly observable in the sense of injectivity of the
observation map (together with the full-rankness of its Jacobian)
if and only if it is so in some K-function senses.

I. INTRODUCTION

Nonlinear observability and observers have been themes of
active research for several decades (see, for example, [1]–[24]
and references therein). Different nonlinear observers require
different “observabilities,” hence several different notions re-
lated to nonlinear observability have been used in the literature.
Among them, some kind of “uniform” observability is espe-
cially important in the construction of nonlinear observers of
receding horizon type [1], [3], [6], [13], [18], [21].

Three different notions of uniform observability have been
widely used in the literature, namely, that based on injectivity
of an observation map (or window; a sequence of outputs) as
a function of the state, the full-rankness of the Jacobian of the
map, and a K-function that determines the relation between
the “state error” and corresponding “observation map error,”
uniformly with respect to all admissible inputs.

The requirement of uniformity with respect to all admissible
inputs may appear to be too restrictive; but recently, the
author has proved that, for discrete-time nonlinear systems
whose state transition and output maps are continuously dif-
ferentiable, as far as the initial condition and the inputs are
on compact sets, uniform observability based on injectivity
together with the full-rankness of the observation map is
equivalent to its non-uniform counterpart [9]. However, the
relation between above mentioned uniform observability and
that based on K-functions has been untouched. This technical
notes focuses on this subject.

In what follows, several equivalences between uniform
observability based on injectivity (or together with the full-
rankness) of the observation map and those based on K-
functions have been established.

II. NOTATIONS AND DEFINITIONS

Consider a discrete-time nonlinear system of the form

x(t + 1) = f(x(t), u(t)),
y(t) = h(x(t)),

(1)

where x(t) ∈ Rn is the state with x(0) ∈ ΩX , u(t) ∈ ΩU ⊂
Rnu is the control input, and y(t) ∈ Rny is the output. We
assume that ΩX and ΩU are compact. Unless explicitly stated
otherwise, f is assumed to be C2 on Rn × N (ΩU ), where
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N (ΩU ) is an open set containing ΩU , and h is assumed to be
C2 on Rn.

Observability is the possibility of reconstructing x(t0) from
an output sequence (y(t0), y(t0+1), . . .), but for time-invariant
systems, t0 is immaterial. Therefore, we restrict our attention
to the case where t0 = 0.

By φt(x(0);u), we denote the solution of (1) at the time
instant t initialized with x(0) at t = 0, that is, φ0(x(0);u) =
x(0), and for t > 0, φt(x(0);u) = f(φt−1(x(0);u), u(t−1)).
Similarly, we define a t-length observation map (window) by

ηt(x(0);u) =

 h(x(0))
. . .

h(φt−1(x(0);u))

 . (2)

We denote the finite sequence of inputs (u(0), . . . , u(t)) by
u[0, t] and the infinite sequence (u(t), u(t+1), . . .) by u[t,∞].
The countable product of ΩU is denoted by

∏
N ΩU . A

sequence (x1, x2, . . .) is denoted by (xk)k∈N. Note that, in
this notation, the subscript has no relation with the time. The
symbol ‖ · ‖ denotes the Euclidean norm for a vector, and the
induced norm for a matrix. The symbol B(x, r) denotes the
open ball of radius r centered at x, and Sn denotes the n-
dimensional unit sphere centered at the origin. For a bounded
set A, CHA denotes the minimum compact and convex set
containing A. Product spaces are assumed to be equipped
with the product topology, and subspaces are assumed to be
equipped with the relative topology.

Typically, uniform observabilities based on injectivity and
full-rankness of the observation map are formulated as follows
(actually, they are defined in various ways; see [2], [4]–[7], [9],
[10], [12], [14], [17], [19], [22], [25], [26] for detail).

Definition 1 [2], [4]–[6], [9], [10], [12], [14], [19], [22], [25],
[26] The system (1) is said to be uniformly observable on ΩX

with respect to all admissible inputs if ∃N > 0, ∀u[0,∞] ∈∏
N ΩU , the map ηN (x; u) is injective as a function of x ∗.

Definition 2 [4]–[7], [9], [10], [17], [19] The system (1) is
said to satisfy the uniform observability rank condition on ΩX

with respect to all admissible inputs if ∃N > 0, ∀x ∈ ΩX ,
∀u[0,∞] ∈

∏
N ΩU , rank ∂ηN

∂x

∣∣∣
(x;u)

= n.

As for K-functions†, several slightly different “uniform
observabilities” based on K-functions have been used in the
literature [1], [3], [6], [15], [21]. The following is a typical
one.

Definition 3 [3] The system (1) is said to be K-uniformly
observable on ΩX with respect to all admissible inputs if

∗The function ηN (x; u) is affected only by the finite “head” sequence
u[0, N − 2] and independent of the tail sequence u[N − 1,∞]. Similar
remarks also hold for subsequent definitions.

†A function ϕ : R≥0 → R≥0 is said to be a K-function if it is continuous,
ϕ(0) = 0, and is strictly increasing, where R≥0 denotes the set of nonnegative
real numbers. Commonly, the domain of a K-function is the half-open interval
[0,∞) (see, for example, [27], [28]), but in this technical note, we use this
notion in a bit wider sense and include the cases where the domain is any
half-open or closed interval of the form [0, a) or [0, a], where a > 0.
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∃N > 0, ∀x1, x2 ∈ ΩX , ∀u[0,∞] ∈
∏

N ΩU ,

ϕ(‖x1 − x2‖) ≤ ‖ηN (x1; u) − ηN (x2;u)‖ (3)

for some K-function ϕ(·) ‡.

It is possible to construct an observer through a left inverse
of ηN (x; u). However, in many cases, the “state estimation er-
ror” of an observer is expected to have finite sensitivity against
small errors in the “observation map error. ” Definition 3 is
insufficient to fulfill this requirement, and a stronger condition
is required.

Definition 4 [3] The observation map ηN (x;u) is said to
have a finite sensitivity to the state § if the K-function ϕ(·) of
Definition 3 satisfies the following property:

δ = inf
x1,x2∈ΩX ,x1 6=x2

ϕ(‖x1 − x2‖)
‖x1 − x2‖

> 0. (4)

In what follows, the length of the observation map is fixed
at N . Therefore, the input sequence that actually affects the
observability is u[0, N−2]. To avoid the overuse of the tedious
notation u[0, N − 2] ∈

∏
N−1 ΩU , we denote it as u ∈ ΩU ,

and rewrite ηN (x; u) as η(x, u) with omitting the subscript N .

III. MAIN RESULTS

We begin with a technical lemma that is required to show
the equivalence between the conditions of Definition 1 and
Definition 3.

Lemma 5 Let I = [0, 1] or [0,∞), and ϕ0 : I → R≥0

be a monotone nondecreasing function with ϕ0(0) = 0 and
ϕ0(λ) 6= 0 for λ 6= 0. Then, there is a K-function ϕ that
satisfy ϕ ≤ ϕ0 over I . If I = [0,∞) and ϕ0 is unbounded,
then ϕ is a K∞-function ¶.

Proof. First, let I = [0, 1], (ak)k∈N be a strictly decreasing
sequence of positive real numbers that converges to zero with
a0 = 1, and (ck)k∈N be a strictly decreasing sequence of
positive real numbers that converges to zero with 0 < c0 < 1.
For each k, define bk = ck+1ϕ0(ak+1), and let

ϕ(λ) =

{
0, λ = 0,

bk+1
ak−λ

ak−ak+1
+ bk

λ−ak+1
ak−ak+1

, λ ∈ [ak+1, ak].

Because the sequence (bk)k∈N converges to zero, ϕ is con-
tinuous at λ = 0, and it is obviously continuous at λ 6= 0.
By definition, ϕ is strictly increasing. We prove that ϕ(λ) ≤
ϕ0(λ). The assertion is obvious for λ = 0. If λ 6= 0, ∃k,
λ ∈ [ak+1, ak], and

ϕ(λ) ≤ bk = ck+1ϕ0(ak+1) < ϕ0(ak+1) ≤ ϕ0(λ).

Hence ϕ is the desired K-function.

‡Some authors (e. g., [3]) define K-uniform observability in the squared
form, that is, ϕ(‖x1 − x2‖2) ≤ ‖ηN (x1; u) − ηN (x2; u)‖2. However,
the difference between Definition 3 and this is immaterial, because for a K-
function ϕ(λ), all of ϕ(λ2), ϕ(

√
λ), ϕ2(λ), and

p

ϕ(λ) are K-functions.
§This term does not seem to be standard.
¶A function ϕ is a K∞-function if it is a K-function and ϕ(t) → ∞ as

t → ∞ [27], [28].

Next, let I = [0,∞). We assume that, over the interval
[0, 1], ϕ has been partially constructed by the above procedure
already. By definition,

ϕ(a0) = c1ϕ0(a1). (5)

Let (αk)k∈N be a strictly increasing sequence of positive
real numbers that diverge to infinity with α0 = a1 and
α1 = a0, and (γk)k∈N be a strictly increasing sequence of
positive real numbers that converges to 1 with γ0 = c1 and
γ1 = c0. For each k ≥ 1, define βk = γk−1ϕ0(αk−1), and
let ϕ(λ) = βk

αk+1−λ
αk+1−αk

+ βk+1
λ−αk

αk+1−αk
for λ ∈ [αk, αk+1].

Note that, by definition, the sequence (βk)k∈N\{0} is strictly
increasing. If λ = α1(= a0), then ϕ(λ) = β1 = γ0ϕ0(α0) =
c1ϕ0(a1), which coincides with (5). Hence ϕ is continuous. By
definition, ϕ is strictly increasing, and ϕ(λ) ≤ ϕ0(λ) already
for λ ∈ [0, 1]. If λ ∈ [αk, αk+1] for some k ≥ 1, then

ϕ(λ) ≤ βk+1 = γkϕ0(αk) < ϕ0(αk) ≤ ϕ0(λ).

Hence ϕ ≤ ϕ0 on [0,∞), and ϕ is the desired K-function.
If I = [0,∞] and ϕ0 is unbounded, βk → ∞ as k → ∞

because γk → 1 and ϕ0(αk) → ∞ as k → ∞. Hence ϕ is a
K∞-function. 2

Remark 6 In some situations (such as Definition 4), a
K-function ϕ is required to satisfy the condition that
infλ>0

ϕ(λ)
λ > 0. It is possible to construct a K-function with

this property, as far as infλ>0
ϕ0(λ)

λ > 0, but the procedure is
more elaborate than that given in the proof of Lemma 5.

Because the analysis for the case I = [0, 1] is contained in
that for the case I = [0,∞), we consider the latter case only.

Let (ak)k∈N and (αk)k∈N be as those given in the proof of
Lemma 5, with the additional properties that infk∈N

ak+1
ak

> 0
and infk∈N

αk

αk+1
> 0 (both of them are fulfilled for, say,

geometric sequences.) Let (ck)k∈N be a strictly decreasing
sequence of positive real numbers with 0 < c0 < 1 which
converges to a non-zero limit. The definitions of (γk)k∈N, bk,
βk, and ϕ are identical to those given in the proof of Lemma 5.

Note that, because ϕ0 is nonnegative and monotone, ϕ0 has
the limit from the right at λ = 0. We divide the following
discussions in two cases, according to the value of lϕ =
limλ→+0 ϕ0(λ).

First, consider the case where lϕ = 0. Even though
(ck)k∈N converges to a non-zero limit, ϕ(λ) → 0 as λ →
0 because ϕ0(λ) → 0 as λ0 → 0, hence ϕ is contin-
uous at the origin. By the analysis given in the proof of
Lemma 5, ϕ is strictly increasing and continuous at λ >
0. Therefore, ϕ is a K-function with ϕ ≤ ϕ0. On each
interval [ak+1, ak] or [αk, αk+1], ϕ(λ) is a linear function,
hence ϕ(λ)

λ takes the minimum at the border. Therefore,
infλ>0

ϕ(λ)
λ = min{infk∈N{ϕ(ak)

ak
}, infk∈N\{0}{ϕ(αk)

αk
}}. By

definitions of bk and βk, ϕ(ak)
ak

= ck+1
ak+1
ak

ϕ0(ak+1)
ak+1

and
ϕ(αk)

αk
= γk−1

αk−1
αk

ϕ0(αk−1)
αk−1

. Because infk∈N
ak+1
ak

> 0 and
infk∈N

αk

ak+1
> 0, (ck)k∈N converges to a non-zero limit,

(γk)k∈N converges to 1 and infλ>0
ϕ0(λ)

λ > 0, infλ>0
ϕ(λ)

λ >
0, as desired.
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Second, consider the case where lϕ > 0. Let

ϕ̃0(λ) =

{
λϕ0(λ), λ ∈ [0, 1],
ϕ0(λ), otherwise.

Then, ϕ̃0 ≤ ϕ0. Moreover, for λ ∈ (0, 1], eϕ0(λ)
λ = ϕ0(λ),

hence infλ∈(0,1]
eϕ0(λ)

λ = lϕ > 0, and infλ∈[1,∞)
eϕ0(λ)

λ =
infλ∈[1,∞)

ϕ0(λ)
λ ≥ infλ>0

ϕ0(λ)
λ > 0. Moreover,

limλ→+0 ϕ̃0(λ) = 0. Therefore, applying the construction of
the first part of the proof to ϕ̃0 instead of ϕ0 gives the desired
result.

Now, we state and prove the first equivalence.

Theorem 7 Assume that f and h of (1) are continuous. Then,
the system (1) satisfies the condition of Definition 1 if and only
if it satisfies the condition of Definition 3.

Proof. Because the “if” part is obvious, we prove the “only
if” part only.

Let Dλ = {(x1, x2, u) ∈ ΩX ×ΩX ×ΩU : ‖x1−x2‖ ≥ λ},
and define

ϕ0(λ) = min
(x1,x2,u)∈Dλ

‖η(x1, u) − η(x2, u)‖.

Because λ ≤ λ′ implies that Dλ ⊃ Dλ′ , ϕ0 is monotone
nondecreasing. Moreover, ϕ0(0) = 0 from construction and
ϕ0(λ) 6= 0 because η(x, u) is injective on ΩX for each u.
Hence, by Lemma 5, it is possible to construct a desired K-
function ϕ from ϕ0

‖. 2

Next, assume that the conditions of Definition 1 and Defi-
nition 2 are satisfied. Then, the conditions of Definition 3 and
Definition 4 are satisfied, and even more.

Proposition 8 Assume that the conditions of Definition 1 and
Definition 2 are fulfilled. Then, ∃δ > 0, ∀x1, x2 ∈ ΩX , ∀u ∈
ΩU ,

‖η(x1, u) − η(x2, u)‖ ≥ δ‖x1 − x2‖. (6)

Proof. Let J(x, u) = ∂η
∂x (x, u). We first prove that ∃µ > 0,

∀x ∈ ΩX , ∀u ∈ ΩU , ∀p ∈ Sn,

‖J(x, u)p‖ ≥ µ. (7)

Because ‖J(x, u)p‖ is a continuous function of (x, u, p)
over the domain ΩX × ΩU × Sn, and the domain is com-
pact, ‖J(x, u)p‖ takes a well-defined minimum µ at some
(xµ, uµ, pµ). Because J(x, u) is of full rank, µ > 0. This
implies that ‖J(x, u)p′‖ ≥ µ‖p′‖ for any p′ ∈ Rn.

Next, we prove that J(x, u) satisfies the Lipschitz condition
with respect to x, uniformly for all u, on CH ΩX×ΩU . Let the
l-th row vector of J(x, u) be jl(x, u), and x, x+p ∈ CHΩX .
Then,

jT
l (x + p, u) − jT

l (x, u) =
∫ 1

0

d

dλ
jT
l (x + λp, u)dλ

=
∫ 1

0

∂jT
l

∂x
(x + λp, u)pdλ.

(8)

‖The function ϕ0 may be discontinuous. This happens typically when ΩX

is not connected.

Let Γ(l) = maxx∈CH ΩX ,u∈ΩU
‖∂jT

l

∂x (x, u)‖. Then, by (8),

‖jl(x + p, u) − jl(x, u)‖ ≤ Γ(l)‖p‖
∫ 1

0

dλ = Γ(l)‖p‖.

By letting Γ =
√

N maxl=1,...,N Γ(l), we obtain

‖J(p + x, u) − J(x, u)‖ ≤ Γ‖p‖, (9)

as desired.
By using (9), we evaluate the difference between η(x +

p, u) − η(x, u) and J(x, u)p, uniformly with respect to all u,
where x, x + p ∈ CHΩX . Let

r(x, p, λ, u) = J(x + λp, u) − J(x, u). (10)

Then, by (9),
‖r(x, p, λ, u)‖ ≤ Γ‖λp‖. (11)

By evaluating the right hand side of

η(x + p, u) − η(x, u) =
∫ 1

0

d

dλ
η(x + λp, u) dλ

=
∫ 1

0

J(x + λp, u)p dλ

with using (10) and (11), we obtain that

η(x+p, u)−η(x, u)−J(x, u)p =
∫ 1

0

r(x, p, λ, u)p dλ (12)

and ∥∥∥∥∫ 1

0

r(x, p, λ, u)p dλ

∥∥∥∥ ≤ Γ
2
‖p‖2. (13)

Let x1, x2 ∈ ΩX . By (7), (12), and (13),

‖η(x1, u) − η(x2, u)‖ ≥ µ‖x1 − x2‖ −
Γ
2
‖x1 − x2‖2.

Thus, if ‖x1 − x2‖ ≤ µ
Γ ,

‖η(x1, u) − η(x2, u)‖ ≥ µ

2
‖x1 − x2‖.

Next, consider the set Dµ/Γ = {(x1, x2, u) ∈ ΩX ×
ΩX × ΩU : ‖x1 − x2‖ ≥ µ

Γ}. If Dµ/Γ = ∅, we are done
by letting δ = µ

2 , hence assume that Dµ/Γ 6= ∅, and let
δ0 = min(x1,x2,u)∈Dµ/Γ

‖η(x1, u)− η(x2, u)‖. Because Dµ/Γ

is compact, the minimum is well defined, and it is positive
because η is injective for each u. Then, on the set Dµ/Γ,

‖η(x1, u) − η(x2, u)‖ ≥ δ0

diamΩX
‖x1 − x2‖,

where diamΩX = supx1,x2∈ΩX
‖x1 − x2‖. Thus, by letting

δ = min{µ
2 , δ0

diam ΩX
}, we obtain (6). 2

It is immediate that δ‖x1−x2‖ given in (6) is a K-function
that satisfies the requirements of Definitions 3 and 4.

However, as the following example shows, a system that
satisfies the conditions of Definitions 3 and 4 does not always
satisfy the condition of Definition 2.

Example 1 Let ΩX = {(λ, 0) : λ ∈ [0, 1]} ∪ {(1, λ) :
λ ∈ [−1, 1]} ⊂ R2 and η : ΩX 3 (v, w) 7→ (v, v2w) ∈
R2. Then, η coincides with the identity function on ΩX ,
and for (v, w) and (v′, w′), the standard Euclidean norm
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√
(v − v′)2 + (w − w′)2 serves as a K-function that satisfies

the conditions of Definitions 3 and 4. However, the Jacobian
of η is singular at the origin.

On the other hand, the conditions of Definition 1 and
Definition 2 permit us to enlarge the set in which the inequality
(6) is valid to a set of the form G×ΩU , where G is an open set
containing ΩX×ΩX , and this gives us the desired equivalence
to the conditions of Definitions 3 and 4 in a slightly modified
form.

To see this, the following elementary lemma is necessary

Lemma 9 ∗∗ Let X , Y be topological spaces. If A ⊂ X ,
B ⊂ Y , B is compact in Y , A × B ⊂ G, and G is open
in X × Y . then, for some open set GA of X, A ⊂ GA and
GA × B ⊂ G.

Proof. Fix some a ∈ A. Then, ∀b ∈ B, ∃GA(b): open in X ,
∃GB(b): open in Y , (a, b) ∈ GA(b) × GB(b) ⊂ G. Because
B ⊂ ∪b∈BGB(b) and B is compact, ∃l, ∃b1, . . . , bl, B ⊂
∪l

k=1GB(bk). Let GA(a) = ∩l
k=1GA(bk). Then, GA(a)×B ⊂

GA(a) × ∪l
k=1GB(bk) ⊂ G. By letting GA = ∪a∈AGA(a),

we obtain the desired open set. 2

Theorem 10 The system (1) satisfies the conditions of Def-
inition 1 and 2 if and only if it satisfies the conditions of
Definition 3 and 4 for any (x1, x2, u) ∈ G × ΩU (instead of
ΩX×ΩX×ΩU ), where G is an open set containing ΩX×ΩX .

Proof. Due to the enlargement of ΩX × ΩX into G, the “if”
part is obvious. Hence, we prove the “only if” part only.

As is already stated, our strategy is to enlarge the set in
which the inequality (6) is valid to a set of the form G×ΩU .

Let D0 = ΩX × ΩU × Sn. We have already shown that
∀(x, u, p) ∈ D0, ‖J(x, u)p‖ ≥ µ. Let G0 = {(x, u, p) ∈ Rn×
ΩU×Sn : ‖J(x, u)p‖ > 1

2µ}. Then, G0 is open and D0 ⊂ G0.
Hence, by Lemma 9, there is an open set GA containing ΩX

and GA × ΩU × Sn ⊂ G0. By taking the intersection with
B(0, 2maxx∈ΩX

‖x‖) if necessary, without loss of generality,
one may assume that GA is bounded. Then, by using the same
argument as that of the proof of Proposition 8 (but replacing
CHΩX with CH GA), ∃Γ′ > 0, ∀x1, x2 ∈ CH GA, ∀u ∈ ΩU ,
‖J(x1, u) − J(x2, u)‖ ≤ Γ′‖x1 −x2‖, and again by the same
argument as that of the proof of Proposition 8, ∀x1, x2 ∈ GA,
∀u ∈ ΩU ,

‖η(x1, u) − η(x2, u)‖ ≥ 1
2
µ‖x1 − x2‖ −

1
2
Γ′‖x1 − x2‖2.

Therefore, if ‖x1 − x2‖ ≤ µ
2Γ′ ,

‖η(x1, u) − η(x2, u)‖ ≥ 1
4
µ‖x1 − x2‖.

If the set {(x1, x2) ∈ GA × GA : ‖x1 − x2‖ ≥ µ
2Γ′ } is

empty, we are done by letting δ = 1
4µ and G = GA × GA.

Otherwise, let G′ = {(x1, x2) ∈ GA × GA : ‖x1 − x2‖ <
µ

2Γ′ }, D1 = {(x1, x2) ∈ ΩX × ΩX : ‖x1 − x2‖ ≥ µ
2Γ′ } and

D2 = D1 × ΩU . Because η is an injection on ΩX for each

∗∗Lemma 9 is almost obvious, and the author does not claim any novelty
on this. However, for the sake of completeness, a full proof is given.

u and D2 is compact, ‖η(x1, u)− η(x2, u)‖ takes a non-zero
minimum δ′0 on D2. Let G2 = {(x1, x2, u) ∈ GA×GA×ΩU :
‖η(x1, u) − η(x2, u)‖ > 1

2δ′0}. Then, G2 is open and D2 ⊂
G2, hence, by Lemma 9, there is an open set G1 containing
D1 and G1 ×ΩU ⊂ G2. Because G1 is a subset of GA ×GA,
by letting δ = min{ 1

4µ,
δ′
0

2diam GA
} and G = G′∪G1, (6) holds

for all (x1, x2, u) ∈ G × ΩU .
Now, the conditions of Definition 3 and 4 are satisfied on

G × ΩU by the function δ‖x1 − x2‖. 2

Theorem 10 also shows that a K-function defining K-
uniform observability may be replaced with a norm function.

Remark 11 It may appear that the distinction between the
conditions of Definition 3 and 4 and those given in Theorem 10
is immaterial if the initial condition set ΩX is open (and is
not compact). However, without compactness, Theorem 10
does not hold. Obviously, if ΩX is open and the conditions
of Definition 3 and 4 are fulfilled, then the conditions of
Definition 1 and 2 are fulfilled. However, the converse is
false. For example, consider the one-dimensional map

η : R 3 λ 7→ arctanλ ∈ R.

This is an injection and dη
dλ = 1

1+λ2 > 0. However, in order
for a nonnegative, monotone nondecreasing, and continuous
function ϕ to satisfy ϕ(|λ1 −λ2|) ≤ | arctanλ1 − arctanλ2|,
it should be identically zero.

Remark 12 Among several definitions of observability of
discrete-time nonlinear systems, the most convenient one,
especially for observers of receding horizon type, is that based
on a K-function. Superficially, K-function-based observability
(Definition 3 together with Definition 4) looks a bit artificial,
but Theorem 10 and the results of [9] shows that this ap-
pearance is deceptive. By Theorem 10, they are equivalent
to the uniform observability in the sense of injectivity of
the observation map together with the full-rankness of its
Jacobian, and it is shown in [9] that they are equivalent to
their non-uniform counterparts, as far as the initial condition
and the inputs are on compact sets. In this sense, K-function-
based observability is a natural property.

IV. CONCLUSION

In this technical note, we have shown that, under C0 condi-
tion, a discrete-time nonlinear system is uniformly observable
in the sense of injectivity of the observation map if and only
if it is so in K-function sense, and under C2 condition, it is
uniformly observable in the sense of injectivity together with
the full rankness of the Jacobian of the observation map if and
only if it is so in “finite sensitivity” K-function sense.

It is not known that the latter equivalence holds under
weaker conditions such as C1. For continuous-time systems,
several results related to uniform observability have been
already obtained [6], but to the best of the author’s knowledge,
the relation between K-function-based notions and others has
not been fully understood yet. To investigate them is left to
further research.
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